欢迎来到专业的新思文库网平台! 工作计划 工作总结 心得体会 事迹材料 述职报告 疫情防控 思想汇报 党课下载
当前位置:首页 > 范文大全 > 公文范文 > 正文

配电自动化FTU终端供电新能源应用技术研究

时间:2022-10-27 20:40:05 来源:网友投稿

摘要:文章详细介绍了风光发电系统基本原理,结合正在进行的实际配电自动化建设,分析了风光发电系统在配电自动化当中的应用,对配电自动化FTU进行了分析,并以桐乡市供电公司配电自动化FTU应用实例,介绍了配电终端新能源技术的应用。

关键词:新能源;风光互补发电系统;配电自动化;FTU终端设备

中图分类号:TM76 文献标识码:A 文章编号:1009-2374(2014)28-0047-02

1 FTU终端设备概述

随着智能电网建设的有序推进,配电自动化作为智能配电网建设的关键环节已在国内大规模开展建设工作,配电自动化终端设备FTU的应用也日趋广泛。提高配电自动化终端设备运行可靠性,从而实现提高配电网供电可靠性和改善供电质量,已纳入国家电网公司智能配电网建设的整体规划设计考虑范围。在国网公司颁布的企业标准《配电自动化终端/子站功能规范》(Q/GDW514-2010)中明确提出配电自动化终端设备供电电源可采用新型能源作为供电电源。

在配电自动化系统的应用与实践中,目前户外线路上FTU终端设备的工作电源接入方式单一,主要依靠外接线路电压互感器作为FTU终端设备供电电源。外接电压互感器方式存在后期维护难度高,维护时线路需停电等问题。并且存在如果线路长时间停电检修,此时FTU终端蓄电池组需要充电而无电可充的运行风险。随着太阳能发电技术和风力发电技术的进步,光电及风电的转换效率已大幅提高,新能源供电技术也从原来的低级应用向高级应用方向发展,在电力系统中的应用也越来越广泛。新能源供电技术应用于FTU终端设备供电电源,将实现FTU终端设备供电电源多样化,有效提高FTU终端设备供电稳定性,满足配网自动化系统可靠运行的要求,同时将有利于探索解决偏远地区配电自动化建设中户外配电终端设备工作电源供电问题。

2 风光互补发电系统简述

风光互补发电系统主要由风力发电机组、太阳能光伏组件、逆变器等部分组成,是集风能、太阳能等多种能源发电技术及系统智能控制技术为一体的复合可再生能源发电系统。

(1)风力发电部分是利用风力机将风能转换为机械能,通过风力发电机将机械能转换为电能,经过逆变器对负载供电。

(2)光伏发电部分利用太阳能电池板的光伏效应将光能转换为电能,通过逆变器将直流电转换为交流电对负载进行供电。

(3)逆变系统由几台逆变器组成,把直流电变成标准的220V交流电,保证交流电负载设备的正常使用。同时还具有自动稳压功能,可改善风光互补发电系统的供电质量。

风光互补是风力发电机和太阳能电池方阵两种发电设备共同发电。夜间和阴雨天无阳光时由风能发电,晴天由太阳能发电,在既有风又有太阳的情况下两者同时发挥作用,实现了全天候的发电功能,比单用风机和太阳能更经济、科学、实用。

风光互补发电比单独风力发电或光伏发电有以下

优点:

(1)利用风能、太阳能的互补性,可以获得比较稳定的输出,系统有较高的稳定性和可靠性。

(2)在保证同样供电的情况下,可大大减少储能蓄电池的容量。

(3)通过合理地设计与匹配,可以基本上由风光互补发电系统供电,很少或基本不用启动备用电源如柴油机发电机组等,可获得较好的社会效益和经济效益。

风光互补发电系统可采用垂直轴风机作为风力发电主体组件,其具有如下优点:

(1)安全放心涡轮垂直式外形设计。采用单涡轮垂直叶片设计,连接紧固,设计一体成形,无风轮飞车危险,极大地增加使用安全系数。外形异于一般的水平轴风力发电机,所以增加视觉吸引力及美化景观的效果。而且由于没有风轮范围的限制,非常适合用于作为同杆架设的配电终端后备电源应用。

(2)外转子发电效率高。采用盘式无铁芯发电机,外转子机芯,启动扭力低,减少机械损失。新一代无噪音发电机置顶设计,有效减少发电机运作震动时,对杆造成的压力,无共振危险,超静音。

(3)360°全方位迎风(1.5m/s)超低风起动。垂直轴风力发电机,风叶设计不受风向影响,能适应风向及风速的频繁变化,平稳发电。专门针对低风速地区设计,360°全方位迎风,自然风(1.5m/s)即可启动,风能利用率高。

3 风光互补发电系统应用于配电终端供电电源实践

桐乡市供电局结合当前正在进行的配电自动化建设,开展了配电自动化FTU(柱上开关运行监测终端)终端供电新能源应用技术研究,积极探索FTU终端设备供电电源多样化,提高配电终端设备安全运行水平。

依托20kV配网线路,选取该线路已装设配电自动化终端FTU的4台分段开关,采用同杆架设方式安装了风光互补发电系统,风光互补发电系统由300W垂直轴风力发电机组、80W光伏发电组件及逆变器组成。下图1是风光互补发电系统后备电源现场安装实例图。

图1 风光互补发电系统后备电源现场安装效果图

如下图2,是风光互补后备电源供电方式示意图。风光互补发电系统发出的电能通过逆变器逆变为220V交流电,接入FTU蓄电池充电模块,该充电模块支持双路充电电源输入。形成与原有的由外接式线路电压互感器变换的220V交流充电回路构成双回路充电模式。在线路运行正常时,风光互补发电系统与外接式线路电压互感器同时为蓄电池充电模块提供充电电源,当线路发生故障时,风光互补发电系统独立为蓄电池提供充电电源,保障蓄电池稳定持续输出电能,为FTU配电终端及相关通信设备提供工作电源。

图2 风光互补后备电源供电方式示意图

根据现场运行证明,FTU配电终端及相关通信设备运行功率30W,配套蓄电池组件可在无外界充电电源供应下满足持续正常工作9小时,在装设了风光互补发电系统后,当线路发生故障及线路检修情况下,蓄电池组件可得到风光互补发电系统输出的电能持续充电,避免了蓄电池组件电能耗空,FTU配电终端及相关通信设备停止运行的风险,确实提高了配电自动化终端设备运行可靠性。

4 结语

综上所述,随着智能配电网建设的全面推进,特别是农村电网配电自动化建设的逐步开展,配电自动化终端设备的运行可靠性将越来越凸显出其重要性。相比于传统的单一依靠外接式电压互感器作为配电自动化终端及其相关通信设备工作电源的建设模式,引入风光互补发电系统作为后备供电电源将实现供电电源的多样化,有效提高配电自动化终端设备的运行可靠性。特别在风、光资源条件较好,同时地处偏远地区的配电自动化建设中,风光互补发电系统将成为直接解决户外配电终端设备工作电源供电问题的一种可尝试应用的建设

模式。

参考文献

[1] 国家电网公司.配电自动化终端/子站功能规范(Q/GDW514-2010)[S].

[2] 林功平,徐石明,罗剑波.配电自动化终端技术分析[J].电力系统自动化,2003,(12).

[3] 蔡朝月,夏立新.风光互补发电系统及其发展[J].机电信息,2009,(24).

[4] 普子恒,倪浩,黄杨珏.浅析风光互补发电系统及其应用前景[J].科协论坛,2009,(6).

作者简介:曾振源(1987-),男,宁夏固原人,国网浙江桐乡市供电公司助理工程师,研究方向:电气工程及其自

动化。

推荐访问:终端 新能源 配电 技术研究 供电