对照。通过能量揭露岩体破坏本质特征与现有理论能够形成呼应关系,在一定程度说明本文结论的正确性。
5 结 论
(1) 岩体裂隙倾角对能量演化规律的影响是非线性的。随裂隙倾角不断增加,能量密度先增加后减小。
(2) 不同受荷阶段能量关系具有明显特征。加荷初期弹性能比例为40%~45%,中期为55%左右,后期为60%~65%,此时临近破坏,可作为岩石受荷状态的判断依据。
(3) 裂隙倾角影响岩体能量响应程度。岩体受荷过程中两种能量密度变化与各能量比例变化不同,表明倾角的变化对岩体能量吸收量产生影响,能量吸收在中等倾角范围内到达峰值。
(4) 能量关系曲线趋势的改变预示岩体将出现失稳破坏。通过分析各曲线发现,能量关系曲线趋势改变后,岩体出现破坏,且改变程度越大,越接近破坏状态,可依此作为岩体失稳预警的有力判断依据。
参考文献:
[1]谢和平,鞠 杨,黎立云.基于能量耗散与释放原理的岩石强度与整体破坏准则[J].岩石力学与工程学报,2005(24):3003-3010.
[2]张志镇.岩石变形破坏过程中的能量演化机制[D].徐州:中国矿业大学,2013.
[3]张志镇,高峰.受载岩石能量演化的围壓效应研究[J].岩石力学与工程学报,2015,34(1):2-11.
[4]张志镇,高峰.单轴压缩下红砂岩能量演化试验研究[J].岩石力学与工程学报,2012,31(5):953-962.
[5]白仕红.循环荷载下裂隙岩体能量演化及损伤特性[D].成都:成都理工大学,2015.
[6]薛东杰,周宏伟,钟江城,等.采动岩体能量释放及灾变机制研究[J].岩石力学与工程学报,2014,33(S2):3865-3872.
[7]周洪飞,苏国韶.岩石破裂与能量释放过程的FLAC 3D 数值模拟[J].人民长江,2012,43(17):74-78.
[8]苏承东,张振华.大理岩三轴压缩的塑性变形与能量特征分析[J].岩石力学与工程学报,2008,27(2):273–280.
[9]尤明庆,华安增.岩石试件破坏过程的能量分析[J].岩石力学与工程学报,2002,21(6):778–781.
[10]许江,张媛,杨红伟,等.循环孔隙水压力作用下砂岩变形损伤的能量演化规律[J].岩石力学与工程学报,2011,30(1):141–148.
[11]喻勇,张宗贤,俞洁,等.岩石直接拉伸破坏中的能量耗散及损伤特征[J].岩石力学与工程学报,1998,17(4):386–392.
[12]华安增,孔园波,李世平,等.岩块降压破碎的能量分析[J].煤炭学报,1995,20(4):389–392.
[13]黄达,黄润秋.卸荷条件下裂隙岩体变形破坏及裂纹扩展演化的物理模型试验[J].岩石力学与工程学报,2010,29(3):502-512.
[14]徐建光,张平,李宁.循环荷载下断续裂隙岩体的变形特征[J].岩土工程学报,2008,30(6):802–806.
[15]哈秋舲.加载岩体力学与卸荷岩体力学[J].岩土工程学报,1998,20(1):114-118.
[16]赵东宁,李明霞,张艳霞,等.微裂隙对灰质泥岩强度的影响分析[J].人民长江,2013,44(22):86-88.
[17]肖树芳,杨淑碧.岩体力学[M].北京:地质出版社,1987.
[18]韩 刚,杨 帆,刘 宇,等.双轴循环荷载条件下含预制裂纹类玄武岩岩桥贯通模式[J].工程地质学报,2016,24(2),235-245.
[19]SUN J,WANG S J.Rock mechanics and rock engineering in China:developments and current state-of-the-art[J].International Journal of Rock Mechanics and Mining Sciences,2000,37(3):447–465.
引用本文:娄 琛,赵其华,张埕豪,吕小波.裂隙倾角对岩体能量演化规律影响研究[J].人民长江,2019,50(1):158-162.
Study on influence of fissure inclination on energy evolution of rock mass
LOU Chen ZHAO Qihua ZHANG Chenghao LYU Xiaobo 1,2
(1.State Key Laboratory of Geo-environment Protection, Chengdu University of Technology, Chengdu 610059, China;2.College of Environment and Civil Engineering, Chengdu University of Technology, Chengdu 610059, China)
Abstract:Prediction of instability and failure of rock mass can provide a basis for the design of rock mass support. The effect of fissure inclination on the energy evolution of rock mass is studied by cyclic loading and unloading. The process of energy evolution revealed the nature of rock deformation and breakage. The study results show that: the elastic energy ratio is about 40%~45% at the beginning of the loading, approximately 55% at the middle stage, and 60%~65% at the later stage; The variation rate of elastic energy ratio has a close relation with the fissure inclination. The energy density increases with the increase of load, and the fissure inclination affects the variation rate of energy density;The more obvious the transition of the ratio of energy density is, the closer the rock mass is to destruction;The increase and decrease of dissipation energy density has a high correlation with the failure process of rock mass;The energy absorption capacity of fractured rock mass increases first and then decreases with the increase of inclination, showing a nonlinear relationship between the fracture angle and the energy evolution. These relations are distinguished in different stages, thus it can be an early indicator to instability and failure of rock mass.
Key words: fissure inclination; energy principle; elastic energy density; dissipation energy density; sensitivity