欢迎来到专业的新思文库网平台! 工作计划 工作总结 心得体会 事迹材料 述职报告 疫情防控 思想汇报 党课下载
当前位置:首页 > 范文大全 > 公文范文 > 正文

2023《找质数》五年级数学教案3篇【优秀范文】

时间:2023-04-13 08:10:08 来源:网友投稿

《找质数》五年级数学教案1  教材分析:  本课的知识属于“数论”的范畴,这些知识的学习是后面学习约分、通分的基矗对于“质数”和“合数”的概念比较抽象,学生不易理解,学习有一定的困难。教材按前一节“下面是小编为大家整理的2023《找质数》五年级数学教案3篇【优秀范文】,供大家参考。

2023《找质数》五年级数学教案3篇【优秀范文】

《找质数》五年级数学教案1

  教材分析:

  本课的知识属于“数论”的范畴,这些知识的学习是后面学习约分、通分的基矗对于“质数”和“合数”的概念比较抽象,学生不易理解,学习有一定的困难。教材按前一节“找因数”的编写思路编写本课,用小正方形拼长方形的方法,引导学生认识质数与合数。

  教学目标:

  1。在用小正方形拼长方形的活动中,经历探索质数与合数的过程,理解质数与合数的意义;

  2。能正确判断一个数是质数或合数;

  3。在研究质数的过程中丰富对数学发展的认识,感受数学发展的文化魅力;

  4。在猜想——验证——概括——理解的过程中体会学习数学的乐趣,积累数学学习的方法。

  教学重点:

  理解质数与合数的意义。

  教学难点:

  能正确判断一个数是质数还是合数,体会数学学习的方法。

  教学学情:

  学生已经有了利用小正方形拼摆长方形找因数的经历,为本节课再次通过小正方形拼摆长方形找质数的学习打下了良好基础,只是学生的思维水*还存在一定的差距,在学习的过程中还会出现快慢之分。

  教法学法:

  新课标指出,教师只是学生学习活动组织者,引导着,合作者,因此在本课中,我主要采用引导发和趣味法进行教学,以求限度的调动学生学习的积极性。而学生则主要采用动手操作法、观察分析法和讨论法进行学习掌握新知的。

  教学过程:

  本课的教学设计是在充分尊重教材编写的基础上有所创新,力求体现新的教学理念与思想。在此,我主要采用的是趣味教学法。

  学生的认知活动将受课堂情绪因素的影响,宽松,活跃,和谐的教学氛围能成为学生大胆探索,勇于创新的催化剂所以本节可,我的设计主要体现在一个字—趣。

  一、课前导入互动。

  我与学生做了个猜年龄的游戏。老师今年30岁,有个学生的年龄是老师年龄的因数,问这个学生可能有多大?通过这个游戏拉近了师生的距离,并且在学生猜年龄的过程中通过找30的因数,需要调动头脑中

  关于因数的知识,也为今天的学习做了很好的知识铺垫。

  二、新课呈现

  在新课教学中,我以做拼图游戏引入,先让学生分别用2个,4个和12个小正方形拼长方形,看看可以分别拼成几个长方形。在学生说出结果后提出质疑“是不是小正方形的个数越多,拼成的长方形个数就越多呢?”在学生给出否定的回答后,再让学生通过举反例加以论证。然后再抛出一个问题:“那与什么有关呢?”让学生进行猜想,当学生说出与因数个数有关时,接着让小组合作,分别摆出由2—12个小正方形组成长方形并填写书上表格(课件出示)在学生完成表格后,在引导学生观察表格思考:(ppt出示)

  1、观察上表格各因数,你会有什么发现;

  2、结合你的发现将2—12各数按因数进行分类并说说这两类数分别有什么特点。(这点可以不说,直接出示),

  然后让学生自学书本,看看数学上把具有这类特点的数分别叫什么数。从而达到理解这一概念的目的。(这一环节让学生经历了猜想—验证—概括—理解的学习过程,是学生对质数、合数的概念达到理解的目的。)

  三、练习

  在练习部分,老师先出示1—100的表格,(课件出示)让学生说说他是如何判断一个数是质数还是合数的,引导学生学以致用,会用概念去判断。在教知识的同时也交给了学生学习的方法。在学生兴致勃勃的对这些数进行判断时,是迅速抛出:“1,是质数吗?”这一问题引出学生的争论,将课堂用一次推向某某。接着让学生根据标准的不同对自然数进行分类,从而能使学生很自然的把奇数与偶数、质数与合数加以区分。(这也是引导学生自主构建知识体系的一个重要环节,学生自己探究的知识,其乐趣溢于言表。)接着我有设计了难易程度不同的练习题以适应不同学习层次的学生的需求。

  总之,整堂课以学生为主题,教师为主导,通过引导学生“’猜想—验证—概括—理解”的学习过程,建构自己的知识体系,积累了数学学习的方法,丰富了学生的情感体验,激发了今后学习数学的兴趣与动力。

  四、小节

  让学生畅谈收获与体会。


《找质数》五年级数学教案3篇扩展阅读


《找质数》五年级数学教案3篇(扩展1)

——五年级数学上册找质数说课稿3篇

五年级数学上册找质数说课稿1

  尊敬的评委老师,在座的各位同仁,大家上午好。

  今天我说课的题目是北师版小学数学五年级上册第一单元,《因数与倍数》中的第五节《找质数》。

  我是从说教材、说学情、说教法学法、说教学流程、说板书设计五大方面进行说课的。

  教材分析:

  本课的知识属于“数论”的范畴,这些知识的学习是后面学习约分、通分的基矗对于“质数”和“合数”的概念比较抽象,学生不易理解,学习有一定的困难。教材按前一节“找因数”的编写思路编写本课,用小正方形拼长方形的方法,引导学生认识质数与合数。

  教学目标:

  1.在用小正方形拼长方形的活动中,经历探索质数与合数的过程,理解质数与合数的意义;

  2.能正确判断一个数是质数或合数;

  3.在研究质数的过程中丰富对数学发展的认识,感受数学发展的文化魅力;

  4.在猜想——验证——概括——理解的过程中体会学习数学的乐趣,积累数学学习的方法。

  教学重点:

  理解质数与合数的意义。

  教学难点:

  能正确判断一个数是质数还是合数,体会数学学习的方法。

  教学学情:

  学生已经有了利用小正方形拼摆长方形找因数的经历,为本节课再次通过小正方形拼摆长方形找质数的学习打下了良好基础,只是学生的思维水*还存在一定的差距,在学习的过程中还会出现快慢之分。

  教法学法:

  新课标指出,教师只是学生学习活动组织者,引导着,合作者,因此在本课中,我主要采用引导发和趣味法进行教学,以求最大限度的调动学生学习的积极性。而学生则主要采用动手操作法、观察分析法和讨论法进行学习掌握新知的。

  教学过程:

  本课的教学设计是在充分尊重教材编写的基础上有所创新,力求体现新的教学理念与思想。在此,我主要采用的是趣味教学法。

  学生的认知活动将受课堂情绪因素的影响,宽松,活跃,和谐的教学氛围能成为学生大胆探索,勇于创新的催化剂所以本节可,我的设计主要体现在一个字—趣。

  一、课前导入互动。

  我与学生做了个猜年龄的游戏。老师今年30岁,有个学生的年龄是老师年龄的因数,问这个学生可能有多大?通过这个游戏拉近了师生的距离,并且在学生猜年龄的过程中通过找30的因数,需要调动头脑中关于因数的知识,也为今天的学习做了很好的知识铺垫。

  二、新课呈现

  在新课教学中,我以做拼图游戏引入,先让学生分别用2个,4个和12个小正方形拼长方形,看看可以分别拼成几个长方形。在学生说出结果后提出质疑“是不是小正方形的个数越多,拼成的长方形个数就越多呢?”在学生给出否定的回答后,再让学生通过举反例加以论证。然后再抛出一个问题:“那与什么有关呢?”让学生进行猜想,当学生说出与因数个数有关时,接着让小组合作,分别摆出由2—12个小正方形组成长方形并填写书上表格(课件出示)在学生完成表格后,在引导学生观察表格思考:(ppt出示)

  1、观察上表格各因数,你会有什么发现;

  2、结合你的发现将2—12各数按因数进行分类并说说这两类数分别有什么特点。(这点可以不说,直接出示),

  然后让学生自学书本,看看数学上把具有这类特点的数分别叫什么数。从而达到理解这一概念的目的。(这一环节让学生经历了猜想—验证—概括—理解的学习过程,是学生对质数、合数的概念达到理解的目的。)

  三、练习

  在练习部分,老师先出示1—100的表格,(课件出示)让学生说说他是如何判断一个数是质数还是合数的,引导学生学以致用,会用概念去判断。在教知识的同时也交给了学生学习的方法。在学生兴致勃勃的对这些数进行判断时,是迅速抛出:“1,是质数吗?”这一问题引出学生的争论,将课堂用一次推向高潮。接着让学生根据标准的不同对自然数进行分类,从而能使学生很自然的把奇数与偶数、质数与合数加以区分。(这也是引导学生自主构建知识体系的一个重要环节,学生自己探究的知识,其乐趣溢于言表。)接着我有设计了难易程度不同的练习题以适应不同学习层次的学生的需求。

  总之,整堂课以学生为主题,教师为主导,通过引导学生“’猜想—验证—概括—理解”的学习过程,建构自己的知识体系,积累了数学学习的方法,丰富了学生的情感体验,激发了今后学习数学的兴趣与动力。

  四、小节

  让学生畅谈收获与体会。

  板书设计:

  在板书设计上我力求简介明了,能突出重点。

  我的说课完毕,谢谢。如有不到之处,敬请各位领导批评指正。

五年级数学上册找质数说课稿2

  我要说的课题是《找质数》,主要从四个方面来展开叙述。

  第一:说教材。

  “质数和合数”是九年义务教育小学数学五年级(上)第一单元的内容,在教材第10~11页;是学生学习了因数和倍数的意义,了解了2、5、3倍数的特征之后的重要知识,它是学生学习分解质因数、求最大公约数和最小公倍数的基础,在本章教学中起着承前启后的重要作用。

  教学目标:

  1、使学生根据因数和倍数的意义,会判断一个数是质数还是合数;

  2、培养学生观察、比较、概括和判断能力;

  3、向学生渗透“对立统一”的辨证唯物主义观点。

  教学重点:

  理解质数和合数的意义。

  教学难点:

  正确判断一个数是质数还是合数。

  教学准备:

  课件

  教学安排:

  两课时。

  第二:说教法。

  (一)、第一课时:

  新课程的数学教学强调:要培养学生用数学眼光、数学知识、方法去分析事物,思考问题。本课我主要采用“探究性学习指导法”,把“有意义的思考方法和习惯思维”放在教学首位,构建探索型的教学模式,充分体现“以学生发展为本”的教育理念。

  新课标指出:有效的数学活动应当建立在学生现有认知水*和已有数学知识经验之上。本着此理念,本节课我主要设计四个教学环节

  1、 谈话引探,导入新课。

  如:

  (1)、用哥德巴赫猜想引出课题。

  (2)、结合自然数1—20的因数具体说说。(这样直奔主题的教学,为学生探究知识和巩固知识留下了足够的时间和空间。)

  2、 自主学习,探究新知。

  首先让学生利用课件很快找出1~20各数的因数,铺垫探底。然后讨论怎样给这些数进行分类,怎样分比较合理?(把学生的思维导向于有意义的思考。)学生根据所学的知识有按偶数、奇数分的,有按2、3、5的倍数分的、也有按10以内、10以外的数分的等等,对于学生的分法,教师给于了鼓励,引导学生看书上怎么分的,观察因数的个数,以 “因数个数”的多少来分,学生很快以“只有一个约数的、只有两个约数的、有两个以上因数”分为三类。教师及时出示课件,然后让学生列举出相应的数。这时教师明确告诉学生;像2、3、5、7、11这样只有两个因数的数就叫质数。让学生通过观察每个质数的因数特点概括出质数的意义,并且要求学生按照质数的意义自己找出一些质数,找准确了说说找质数的方法(突出教学的重点)。同样道理,合数的意义就迎刃而解了。紧接着让学生看一个因数的数是谁?书上是怎么给它下定义的?然后出示一些数,让学生判断哪些数是质数?哪些数是合数?判断正确了让同学们互相交流判断方法,为什么又对又快?(从而突破教学难点。)

  (二)、(第二课时)应用知识、巩固知识。

  1、让学生根据学习资料,把1~20这20个数按照奇数、偶数、质数、合数进行分类,分类完成之后互相交流这些数之间的联系和区别。如2既是质数又是偶数;9、15既是奇数又是合数。(既巩固了新知识,又加强了知识之间的横向和纵向联系。)

  2、出示闯关题,有填空、选择、判断、游戏,内容丰富、形式多样,闯关成功给予奖励。(目的是激发学生的学习兴趣,提高学习效率。)

  3、小组合作学习制作100以内质数表,课件出示学习要求:

  (1)、独立思考制作方法

  (2)、小组交流方法

  (3)、动手制作

  (4)、汇报展示。)

  4、课件出示100以内质数表,学生熟记。(便于今后的应用。)

  5、 全课总结、课外延伸。

  师生共同回忆这节课所学知识之后听一则数学信息。歌德巴赫猜想之一:任何一个大于4的偶数,都可以写成两个奇数(或素数)之和。并让学生了解到这个猜想目前证明得最好的是我国数学家陈景润,可惜离成功只差一步便离开了人世。听完后谈感想。(让学生的学习动机、学习兴趣、情感价值观得到进一步的提升。)

  第三:说学法。

  教师的任务不仅要让学生学会,更加重要的是要让学生会学。通过观察、比较,让学生学会分析、综合、整理的方法。

  第四:说计划。

  针对上述情况,准备再加一节练习课,帮助学生对奇数、偶数与质数、合数加以区分,对分解质因数加以补充教学。

五年级数学上册找质数说课稿3

  【教材简析】

  本节课是北师大版小学五年级上册第一单元“倍数与因数”的第5节“找质数”。本节课是在学生已经学习了2,3,5的倍数特征以及掌握了找一个数的因数的方法的"基础上进行教学的,通过本节课的学习,为后续学习公因数、约分、公倍数、通分奠定基础。这节课的知识目标是结合具体活动,认识、理解质数与合数的意义,并能运用质数与合数的概念正确判断一个数是质数或合数。

  通过教材提供具体的操作材料,实现了学生活动式课堂的学习生活,学生积累了丰富的感性认识,符合学生的学习心理,同时有利于教师以学生自主活动为主体,以合作学习为学习形式,改变学习方式,引导学生经历、感受探索的过程。

  首先让学生感觉到有不同类的存在,分类的标准是因数的个数,在活动中感受因数个数不同,把数分为不同种类的数,是本节课的重点,引导学生找到因数个数的特征,并把因数个数作为分类的标准,是本课的难点。

  【学生分析】

  为了了解学生对概念的认识到底掌握到什么程度,在进行教学设计前,我做了一个前测,调查问卷是这样的:

  下面的数学名词,按你知道的程度画符号。

  结果显示: 10人根本没听说过“质数”这个词,15人听说过,但不是很明白。其余16人认为自己已经知道质数是怎么回事了,9人认为自己非常理解。

  所以在质数合数概念呈现之后,我为学生提供一个开放的问题,给出1~20个数,让学生重新认识这些数,并得出一些规律性的结论。这个活动为学生提供了广阔的思考时空,放手让学生去探究,关注有差异的学生去发现,实现自己的学习过程,得到不同的发展,并在辨析中,明确概念、加深理解。

  【教学目标】

  1、通过用小正方形拼长方形的活动中,引导学生感受因数个数是自然数分类的标准,理解和掌握质数与合数的概念,并能运用概念,判断一个数是质数或合数。

  2、通过操作活动和合作学习,培养学生合情推理以及抽象概括的能力。

  3、通过了解质数研究的历史和学生感受多个角度认识数,感受数学文化的魅力。

  【教学资源】

  1、教师

  关于数学家探索歌德巴赫猜想的动画课件、拼摆长方形的动画课件。

  2、学生:

  小正方形卡片、学具袋、实验报告单。

  教学过程:

  (一)故事引入,激发学习欲望

  教师给学生讲一段故事:在二百多年前有一位德国的中学数学教师,他特别热衷研究数学问题,有一次他发现了一个神奇的数学现象,提出了一个猜想(画面1),但不知道对不对,就向当时最著名的数学家欧拉请教,不能发短信,更不能发伊妹儿,就写信。数学大师冥思苦想后,在回信中写道:说我确信你的论断是对的,但我无法证明它(画面2)。这个猜想轰动了整个数学界,数学家们跃跃欲试,但谁都没证明出来。直到四十二年前,我们*的一位数学家也进行了研究,他的成果一直保持着世界领先记录,离成功只有一步之遥,但也没有完整证明出来。再后来,在2000年,英美两国曾悬赏100万美元,奖励能证明这个猜想的人,但至今未果。(画面3)这个猜想太神奇了。想知道这个猜想吗?学完这节课我们就能了解它了。

  (二)拼长方形比赛,感知因数个数

  1、师引领示范拼摆长方形,明确游戏要求

  教师用4个小正方形拼成2种长方形,并向学生说明其中拼成的正方形也是特殊的长方形。

  2、玩摆长方形游戏,初步感受影响拼长方形种数的因素,并大胆提出猜想

  (1)提出任务,小组探索

  师:我用4个小正方形最多能拼出2种不同形状的长方形,你能不能也像刚才那样,用手里的小正方形拼成长方形?师给每个小组都准备了一些小正方形,每组的块数不一样,把所有的小正方形都用上,拼成长方形。

  问题:比一比,哪个小组拼成长方形的方案最多。小组成员要分工合作,把方案记录在表格里。

  (老师在课前给不同的小组发放了不同数量的长方形,分别是3、7、9、10、11、12、18、24。学生活动开始,教师巡视)

  (2)小组汇报,全班交流

  ①汇报

  学生汇报小正方形个数分别是3、7、9、10、11、12、18、24能拼成几种不同的长方形,老师根据学生的汇报,填在黑板的表格里。

  小正方形的总个数  长摆( )个  宽摆( )个

  ②引发认知冲突

  师在学生汇报完24个小正方形能拼成4种长方形后,认为这组方案最多,是这次比赛的冠军,学生一定会强烈反对。

  ③师追问:你们为什么不同意?学生可能回答老师给每个组发的小正方形的个数不同。

  ④引导学生大胆猜想

  师提问:请大家仔细观察黑板表格,你们认为是什么影响到了设计方案的多少?

  学生发表想法,影响设计方案多少的因素可能会有:①数的大小 ② 奇偶性 ③因数个数

  (3)师小结:

  通过刚才的讨论,我们猜测设计方案的多少受到了一些因素的影响,有的认为数大方案多,有的认为偶数比奇数方案多,还有的认为和因数个数有关。是不是像你们猜想的那样,到底什么因素最终决定设计方案的多少呢?我们再试一次,好不好。

  3、玩抢数游戏,进一步感受因数个数决定设计方案的多少,验证数学猜想

  (1)宣布要求,合作探究

  师:刚才是老师分给你们的数,不公*,这次老师这有一些数,你们自己挑,看哪个好要哪个。

  活动要求:数比较大,设计方案时可以摆,可以不摆,探究有几种方案后,也把结果记录在表格里。每个小组只挑一个数研究,把结果记录在表格里。

  (教师贴出几个数:45(2个)、48(2个)、59(2个)、62(2个)下面挂着小正方形袋),

  (学生活动,教师巡视)

  (2)学生自主发表看法,师生多方对话,深入交流

  师:刚才每个小组用自己挑的数,设计方案,结合我们刚才的猜想,现在你有什么发现?试着用手里的数据来举例说明。

  (学生可能提出数大不一定方案多,偶数不一定方案多,教师相机引导,给学生交流创造的空间,掌握举一个反例就可以推翻一个猜想的推理方法,逐渐清晰结论。)

  师小结:看来和因数个数有关系,我们一起来研究研究。

  (三)研究因数情况,尝试分类,概括质数与合数概念

  1、重新梳理,概括质数特征

  (1)全班同学看表格,分别说出3、7、9、10、11、12、18、24的因数有哪些?有几个?

  其实我们刚才长摆几个,宽摆几个,就是这个数的因数。

  (2)提出问题:如果这次我们重新选,只给你一次机会,看谁设计方案多,黑板上这些数,你一定不选哪个数?(给学生理性梳理的时空,学生可能回答不选3、7、11、59)

  追问:为什么不选这些数,请同学们在小组里交流交流各自的想法。

  (学生可能回答:像3、7、11、59这几个数只能设计出一种长方形,或说这样的数只有2个因数,教师适时提出质数的名词,并说一说什么样的数是质数。)

  (3)小结数形结合,形象感受质数特征

  我们用质数摆出的长方形,你有什么体会?(教师分别出示数量是3、7、11、59,摆出长方形的样子,都是细长条的一种长方形。)

  2、学生自主归纳,概括合数概念

  教师引导学生归纳黑板上剩下这些数的特点,概括出合数概念。

  3、初步运用概念,判断一个数是质数还是合数

  问题:刚才学习了质数和合数,说一说51是质数还是合数,你是怎么想的?

  (51这个数学生容易引起争议,爱混淆,在辨析中深入理解质数合数概念,学会初步运用概念看一个数是质数或合数,需要看因数的个数,如果只有1和它本身两个因数,这个数就是质数,如果再找到其他一个,那这个数就是合数。)

  (四)设计开放性问题,引导学生利用已有知识主动观察与思考,发现规律

  1、宣布任务

  师:从我们上一年级开始,就在和数打交道,已经是老朋友了,这学期我们又研究了数的特征,结合这节课我们学习的质数和合数的知识,再来重新认识这些数。

  屏幕出示小组学习单:

  请你从不同角度观察这些数,你有什么发现或结论,写在下面的横线上。

  1 2 3 4 5 6 7 8

  9 10 11 12 13 14 15 16

  17 18 19 20

  发现或结论

  2、学生汇报

  在学生汇报过程中,教师相机引导辨析明确每个观点,并以小组的名义写在黑板上,鼓励学生发现问题的积极性。

  在此过程中重点处理:

  (1)1既不是质数也不是合数;

  (2)偶数除2以外都是合数

  (五)师生共同经历提出歌德巴赫的过程,感受数学的神奇

  师:我们学过的奇数、偶数、质数、合数,他们之间有着密切的联系,但是特别有意思的是,我们能不能把从4开始的偶数写成两个质数相加的形式。

  师生共同从4开始写:4=2+2 6=3+3 8=3+5 10=3+7 12=5+7 14=7+7

  16=5+11 18=7+11 20=7+13 22=17+5

  提出问题:观察上面式子,能提出猜想吗?

  师介绍哥德巴赫猜想。

  有人把歌德巴赫猜想比做数学皇冠上一颗璀璨的明珠,这颗明珠到现在还没有被摘取,因为质数太神奇了,是永恒的迷。关于神奇的质数,要知详情,请看这本书(出示图片),这里面讲述的数学故事和数学知识一定会令你着迷,老师相信在不久的将来,我们同学也能加入探索科学之谜的队伍。

  (六)全课总结:说说今天的收获。

  (七)完成练习题第1、2、4

  自我问答:这节课看起来简单,学生学习特轻松。但在作业中出现的问题五花八门。


《找质数》五年级数学教案3篇(扩展2)

——《找质数》小学五年级数学教案3篇

《找质数》小学五年级数学教案1

  教材分析:

  本课的知识属于“数论”的范畴,这些知识的学习是后面学习约分、通分的基矗对于“质数”和“合数”的概念比较抽象,学生不易理解,学习有一定的困难。教材按前一节“找因数”的编写思路编写本课,用小正方形拼长方形的方法,引导学生认识质数与合数。

  教学目标:

  1、在用小正方形拼长方形的活动中,经历探索质数与合数的过程,理解质数与合数的意义;

  2、能正确判断一个数是质数或合数;

  3、在研究质数的过程中丰富对数学发展的认识,感受数学发展的文化魅力;

  4、在猜想——验证——概括——理解的过程中体会学习数学的乐趣,积累数学学习的方法。

  教学重点:

  理解质数与合数的意义。

  教学难点:

  能正确判断一个数是质数还是合数,体会数学学习的方法。

  教学学情:

  学生已经有了利用小正方形拼摆长方形找因数的经历,为本节课再次通过小正方形拼摆长方形找质数的学习打下了良好基础,只是学生的思维水*还存在一定的差距,在学习的过程中还会出现快慢之分。

  教法学法:

  新课标指出,教师只是学生学习活动组织者,引导着,合作者,因此在本课中,我主要采用引导发和趣味法进行教学,以求限度的调动学生学习的积极性。而学生则主要采用动手操作法、观察分析法和讨论法进行学习掌握新知的。

  教学过程:

  本课的教学设计是在充分尊重教材编写的基础上有所创新,力求体现新的教学理念与思想。在此,我主要采用的是趣味教学法。

  学生的认知活动将受课堂情绪因素的影响,宽松,活跃,和谐的教学氛围能成为学生大胆探索,勇于创新的催化剂所以本节可,我的设计主要体现在一个字—趣。

  一、课前导入互动。

  我与学生做了个猜年龄的游戏。老师今年30岁,有个学生的年龄是老师年龄的因数,问这个学生可能有多大?通过这个游戏拉近了师生的距离,并且在学生猜年龄的过程中通过找30的因数,需要调动头脑中

  关于因数的知识,也为今天的学习做了很好的知识铺垫。

  二、新课呈现

  在新课教学中,我以做拼图游戏引入,先让学生分别用2个,4个和12个小正方形拼长方形,看看可以分别拼成几个长方形。在学生说出结果后提出质疑“是不是小正方形的个数越多,拼成的长方形个数就越多呢?”在学生给出否定的回答后,再让学生通过举反例加以论证。然后再抛出一个问题:“那与什么有关呢?”让学生进行猜想,当学生说出与因数个数有关时,接着让小组合作,分别摆出由2—12个小正方形组成长方形并填写书上表格(课件出示)在学生完成表格后,在引导学生观察表格思考:(ppt出示)

  1、观察上表格各因数,你会有什么发现;

  2、结合你的发现将2—12各数按因数进行分类并说说这两类数分别有什么特点。(这点可以不说,直接出示),

  然后让学生自学书本,看看数学上把具有这类特点的数分别叫什么数。从而达到理解这一概念的目的。(这一环节让学生经历了猜想—验证—概括—理解的学习过程,是学生对质数、合数的概念达到理解的`目的。)

  三、练习

  在练习部分,老师先出示1—100的表格,(课件出示)让学生说说他是如何判断一个数是质数还是合数的,引导学生学以致用,会用概念去判断。在教知识的同时也交给了学生学习的方法。在学生兴致勃勃的对这些数进行判断时,是迅速抛出:“1,是质数吗?”这一问题引出学生的争论,将课堂用一次推向**。接着让学生根据标准的不同对自然数进行分类,从而能使学生很自然的把奇数与偶数、质数与合数加以区分。(这也是引导学生自主构建知识体系的一个重要环节,学生自己探究的知识,其乐趣溢于言表。)接着我有设计了难易程度不同的练习题以适应不同学习层次的学生的需求。

  总之,整堂课以学生为主题,教师为主导,通过引导学生“’猜想—验证—概括—理解”的学习过程,建构自己的知识体系,积累了数学学习的方法,丰富了学生的情感体验,激发了今后学习数学的兴趣与动力。

  四、小节

  让学生畅谈收获与体会。

《找质数》小学五年级数学教案2

  教学内容:

  课本第11页上的内容。

  教学目标:

  1、通过找因数,观察它们的特点,初步理解质数和合数的含义。

  2、培养孩子的观察、比较、抽象、概括能力,通过探索找出寻找质数的简单的方法。

  3、使学生初步认识数学与人类生活的密切联系,体验数学活动充满着探索与创造。

  教学重点:

  在教学活动中,帮助学生理解质数和合数的意义。

  教学难点:

  培养孩子的观察,通过探索找出寻找质数的简单的方法。

  教具准备:

  投影仪、小正方形纸片等。

  教学过程:

  一、揭示课题

  1、先复习自然数按能不能被2整除的分类。

  2、教师引入:同学们已经学习并掌握了找因数的方法,这一节课,我们再一起学习找质数。

  板书课题:找质数。

  二、组织活动,探索新知。

  活动:拼一拼

  1、用12个小正方形拼成长方形,看谁拼的方法多,动作还快。

  (同桌用12个小正方形拼长方形,可以合作,并完成书第10页的表格。)

  2、学生汇报,教师填表(投影出示下表)

  小正方形个数(n)拼成的长方形种数n的因数

  (1)让学生观察左表中各数的因数,看看有什么发现?

  (2)结合上面的发现,将2—12各数分为两类,说一说这两类数分别有什么特点。

  3、教师提示质数和合数的意义。

  一个数只有1和它本身两个因数,这个数叫做质数;

  一个数除了1和它本身以外还有别的因数,这个数叫做合数。

  4、教师:1是质数还是合数呢?(1既不是质数,也不是合数。)

  三、巩固练习(做一做)

  1、在147101115171821这些数中,哪些是质数?哪些是合数?

  2、完成课件练一练1、2题

  四、总结。

  通过今天这节课的学习,你有什么收获?你还有什么要问的?

  五、作业。

  优化作业


《找质数》五年级数学教案3篇(扩展3)

——质数与合数五年级数学教案

质数与合数五年级数学教案1

  在小学阶段,只是让学生在因数、倍数的基础上初步掌握质数、合数的概念,为后面学习求最大公因数、最小公倍数以及约分、通分打下基础。要求学生能用自己的方法找出100以内的质数,并熟练判断20以内的数哪个是质数,哪个是合数。

  学情分析

  1、学生对于抽象概念的学习积极性不高,理解概念和适时判断的能力还不强;

  2、学生观察1至20各数因数个数的规律还存在困难,对于概念的理解和判断会很模糊。

  教学目标

  1、帮助学生理解质数、合数的概念,熟记20以内的质数,能准确判断100以内的数是质数,还是合数。

  2、组织学生通过观察分析、动手操作、合作交流等方式理解概念、感受数学。

  3、活化抽象的概念,增进学生应用数学的意识,激发学生学习数学的热情。

  教学重点和难点

  1、质数、合数的意义。

  2、质数、合数与奇数、偶数的区别。


《找质数》五年级数学教案3篇(扩展4)

——五年级数学《容积》教案10篇

五年级数学《容积》教案1

  教学目标

  1.使学生知道容积的含义.

  2.认识常用的容积单位,了解容积单位和体积单位的关系.

  教学重点

  建立容积和容积单位观念,知道容积单位和体积单位的关系.

  教学难点

  理解容积的含义和升、毫升的实际大小.

  教学步骤

  一.铺垫孕伏

  1.什么是体积?

  2.常用的体积单位有哪些?它们之间的进率是多少?

  3.这个长方体的体积是多少?是怎样计算的?

  二.探究新知

  我们已经学习了体积和体积单位,今天我们继续学习一个新的知识:容积和容积单位.(板书课题)

  (一)建立容积概念.

  1.学生动手实验(每四人一组,每组一个有厚度的长方体盒,细沙一堆)

  实验题目:计算出长方体盒的体积.

  把长方体盒装满细沙,计算细沙的体积.

  2.学生汇报结果.

  长方体盒的体积:先从外面量出长方体盒的长.宽.高,再计算其体积.

  细沙的体积:细沙的体积就是长方体的体积,但要从长方体里面量长.宽.高,再计算其体积.

  教师追问:计算细沙的体积为什么要从长方体里面量长.宽.高?

  3.师生共同小结.

  教师指出:这个长方体盒所容纳细沙的体积,就是长方体盒的容积.我们看见过汽车上的油箱,油箱里装满汽油.这就是油箱的容积.长方体鱼缸里盛满水,它就是鱼缸的容积.

  师生归纳:容器所能容纳的物体的体积,就是它们的容积.(板书)

  4.比较物体体积和容积的相同和不同.

  相同点:体积和容积都是物体的体积,计算方法一样.

  不同点:体积要从容器外量长.宽.高;容积要从里面量长.宽.高.

  所有的物体都有体积;但只有里面是空的能够装东西的物体,才能计量它的容积.(出示长方体木块)

  (二)认识容积单位.

  1.教师指出:计量容积,一般就用体积单位.但是计量液体的体积,如药水,汽油等,常用容积单位升和毫升.(板书:升毫升)

  2.出示量杯:这就是1升的量杯.

  出示量筒:这就是刻有毫升刻度的量筒.

  3.教师演示升和毫升之间的关系:

  ①认识量筒上1毫升的刻度,找出100毫升的刻度.

  ②用量筒量100毫升的红色水倒入1升的量杯,一直到量杯满为止.

  板书:1升=1000毫升

  4.学生演示容积单位和体积单位间的关系:

  ①把1升的红色水倒人1立方分米的正方体盒里

  小结:1升=1立方分米

  ②把1毫升的红色水倒入1立方厘米的正方体盒里

  小结:1毫升=1立方厘米

  5.小结:容积单位有哪些?容积单位和体积单位之间有什么关系?

  6.反馈练习.

  3升=()毫升2700毫升=()升

  2.57升=()毫升640毫升=()升

  2.4升=()毫升3.5升=()立方分米

  500毫升=()升760毫升=()立方厘米

  (三)计算物体的容积.

  1.教学例1.

  一种汽车上的油箱,里面长8分米,宽5分米,高4分米.这个油箱可以装汽油多少升?

  8×5×4=160(立方分米)

  160立方分米=160升

  答:这个油箱可以装汽油160升.

  2.反馈练习.

  一个长方体水箱,从里面量长12分米,宽6分米,深5分米,这个水箱可装水多少毫升?

  12×6×5=360(立方分米)

  360立方分米=360000毫升

  答:这个水箱可以装水360000毫升.

  三.全课小结

  这节课我们学习了哪些知识?容积和体积有什么不同点?计算容积应注意什么?

  四.随堂练习

  1.填空.

  (1)()叫做容积.

  (2)容积的计算方法跟()的计算方法相同.但要从()是长、宽、高.

  (3)6.09立方分米=()升=()毫升

  1750立方厘米=()毫升=()升

  435毫升=()立方厘米=()立方分米

  9.8升=()立方分米=()立方厘米

  2.判断.

  (1)冰箱的容积就是冰箱的体积.()

  (2)一个薄塑料长方体(厚度不计),它的体积就是容积.()

  (3)立方分米()

  3.选择.

  (1)计量墨水瓶的容积用()作单位恰当.

  ①升②毫升

  (2)3毫升等于()立方分米.

五年级数学《容积》教案2

  一、说教材

  《体积与容积》是北师大版五年级下册第41-42页的内容,是在学生已经认识了长方体和正方体的特点的基础上,学习了长方体和正方体的表面积计算之后的教学内容,《体积与容积》是学生进一步学习体积的计算方法等知识的基础,也是发展学生空间观念的重要载体。

  二、说教法:在教学中,我积极引导学生通过观察、操作,让学生手、眼、脑、口并用,调动多种感官参与学习,丰富学生的感性认识。建立有关体积和容积的正确表象,从而切实掌握所学的知识,为以后的进一步学习作好铺垫。

  三、说学法:

  学生自主探索、发现,小组交流

  四、说教学目标:

  1.知识与技能

  通过具体的实验活动,了解体积和容积的实际意义,初步理解体积和容积的概念。

  2过程与方法.

  在操作、交流中,感受物体体积的大小、发展空间观念。

  3.情感、态度与价值观

  增强学生的合作精神和喜爱数学的情感。

  五、说教学重点、难点

  重点:初步理解体积和容积的`概念,以及它们的联系和区别。

  难点:建立体积和容积的表象。

  突破方法:通过演示,引导学生观察,使体积和容积的意义变得直观,容易理解。通过直观的比较使学生理解体积与容积的区别与联系。

  六、说教具

  两个量杯、两个大小不同的水杯、形状不同的石块、小正方体、水。有关课件、茶叶罐,可乐瓶等容器。

  七、说教学过程

  (一)质疑导入

  出示课件乌鸦喝水动画视频。

  师:看完了动画片,谁能说说乌鸦为什么能喝到水呢?水面为什么会上涨呢?是不是原来的水增加了?

  根据学生的回答引导学生概括出:小石子占了一定的空间。

  (二)探究新知

  1、初步感知,物体所占空间有大小。

  师: 我们周围所有的物体都占有一定的空间,只不过有的占的空间大,有的占的空间小。例如,课桌占的空间大,墨水瓶占得空间小;我占的空间大,粉笔头占的空间小;教室占的空间大,黑板擦占的空间小。你能这样的对比着举几个例子说一说吗?(同桌互说)

  (设计意图:让学生利用已有的生活经验,初步感知物体的大小,为下面的探索活动做好铺垫。)

  2、提出问题,讨论解决方法。

  出示两块形状不同的石块,(一块扁状,一块球形的)谁占的空间大呢?,(1)学生观察并独立思考。

  (2)指名说说看法。

  师:看来,只凭观察我们无法判断谁占的空间大,谁占的空间小了。那你能不能想想办法,看看究竟谁占的空间大呢?

  (设计意图:提出问题,让学生寻找解决问题的办法,把学习的主动权交还给学生,不仅增强了学生探索的兴趣,而且还培养了学生解决问题的策略意识和能力。)

  3、观察实验,感知体积的意义。

  演示:将两块石头放入两个装有同样多水的杯子里。

  师:说说你有什么发现?

  生口答后,师追问:

  师:水面为什么会升高呢?上升的高度一样吗?说明了什么问题?

  学生自由发表意见

  引导生理解:两块石块在量杯中都会占一定的空间。所占的空间大,水面上升的就高;所占空间小,水面上升的就少。

  从而揭示课题:物体所占空间的大小,叫作物体的体积。(同时出示课件)

  现在你能用“体积”这个词来分别说说课桌、墨水瓶、教室和黑板擦吗?如:课桌墨水瓶比,课桌的体积大,墨水瓶的体积小。。。。。。

  (设计意图:在活动中,学生深刻地感受到物体占有一定的空间,而且所占有空间的大小不同。学生经历了实验、观察、交流等探究过程,感知了体积的实际含义。)

  4、认识容积。

  师:今天老师带来了这么多的物品,都可以用来装东西。如:可乐瓶,茶叶罐,水杯,胶水瓶,

  像量杯、纸箱、可乐瓶,茶叶罐这样能装其它东西的物体叫容器。你还知道哪些容器?哪些容器装的东西多,哪些容器装的东西少?(学生例举生活中的容器。)

  出示两个大小不同的装满水的水杯,问:哪个水杯装的水多?

  引导学生认识:两个杯子所能容纳物体的大小是不同的。

  揭示:容器所容纳物体的体积,叫作这个容器的容积。

  师:杯子里装满水,水的体积就是这个杯子的容积,茶叶罐装满茶叶,茶叶的体积就是这罐子的容积。

  5、区别体积和容积。

  出示:用来装小正方体的塑料盒和正方体教具。

  师:谁能指出这两个物体的体积和容积呢?

  交流中使学生明白:这两物体体积相同,但正方体教具没有容积。只有能够装东西的物体,才具有容积。引导学生发现:一般情况下,物体的容积比体积小。

  。

  出示课件:体积与容积的区别

  (设计意图:通过比较让学生感知“容积”和“体积”的联系和区别,理解知识间的内在联系,形成比较完整的认知结构。)

  (三)解决问题,巩固应用

  1、试一试(P42)

  出示两个相同小正方体让学生比较大小,然后用4个相同的小正方体,摆出形状不同的物体,让学生判断它们体积的大小。

  师:通过观察,你们发现什么规律?

  引导学生得出结论:体积的大小与物体所占空间的大小有关,与物体的形状无关。(同时出示课件)

  2、课件出示:(第42页“练一练”的第4题)

  (1)搭出两个物体,使它们的体积相同。

  (2)搭出两个物体,使其中一个物体的体积是另一个的2倍。

  (学生先独立按要求操作,然后同桌交流,最后全班交流。学生搭出的图形可能会不一样,这是教师可以引导学生发现体积相等,形状可能不一样,这样可以为下一题的练习打下基础。)

  3、说一说。(第42页“练一练”的第1、2题)

  (课件出示插图,让学生独立思考,再指名回答,说出理由。)

  4、想一想。(第42页“练一练”的第3题)

  (设计意图:练习的设计体现了层次性、科学性和趣味性。学生利用所学知识解释生活中的问题,是所学知识的拓展和延伸。)

  (四)评价体验

  今天这节课我们学习了什么内容?你有什么收获?对体积和容积的知识,你还想知道什么?你对自己这节课的表现满意吗?

五年级数学《容积》教案3

  教学内容:

  容积

  教学目标:

  1、知道容积的意义。

  2、掌握容积单位升和毫升的进率,及它们与体积单位立方分米、立方厘米之间的关系。

  3、会计算物体的容积。

  教学重点:

  1、容积的概念。

  2、容积与体积的关系。

  教学难点:

  容积与体积的关系。

  教具:量筒和量杯、不同的饮料瓶、纸杯

  教学过程:

  一、复习检查:

  说出长正方体体积计算公式。

  二、准备:

  把泥放入一个长方体的小木盒中(压实,与上口*),然后扣出来,量一量泥块的长、宽、高。计算泥块的体积。这个长方体小木盒所能容纳物体的体积是x。

  三、新授:

  1、认识容积及容积单位:

  (1)箱子、油桶、仓库等所能容纳物体的体积,叫做它们的容积。

  通过上面的“做一做”,我们知道长方体小木盒所能容纳物体的体积就是这个小木盒的容积。

  (2)计量容积,一般就用体积单位。但是计量液体体积,如药水、汽油等,常用容积单位升和毫升。

  (3)演示:体积单位与容积单位的关系。

  说一说,在生活中哪些物品上标有升或毫升。升和毫升有什么关系呢?教具演示。

  ①1升(L)=1000毫升(mL)

  将1升的水倒入1立方分米的容器里。

  小结:1升(L)=1立方分米(dm3)

  ②1升=1立方分米

  1000毫升1000立方厘米

  1毫升(mL)=1立方厘米(cm3)

  练一练:

  1.8L=()mL3500mL=()L15000cm3=()mL=()L

  1.5dm3=()L

  (4)小组活动:(1)将一瓶矿泉水倒在纸杯中,看看可以倒满几杯?

  (2)估计一下,一纸杯水大约有多少毫升,几纸杯水大约是1升。

  2、长方体或正方体容器容积的计算方法,跟体积的计算方法相同。但是要从容器的里面量长、宽、高。

  例一个小汽车上的油箱,里面长5分米,宽4分米,高2分米。这个油箱可以装汽油多少升?

  5×4×2=40(立方分米)40立方分米=40升

  答:这个油箱可以装汽油40升。

  做一做:一个正方体油箱,从里面量棱长是1.4米。这个油箱装油有多少升?(订正)

  小结:计算容积的步骤是什么?

  3、我们知道了计算规则物体的体积的方法,如计算长方体的体积是用长乘宽乘高,计算正方体的体积是棱长的3次方。那有些不规则的物体怎么计算它的体积呢?

  出示一个西红柿,谁有办法计算它的体积?小组设计方案:

  四、巩固练习:

  1、生物小组买来一个长方体鱼缸,从里面量长是6分米,宽是4分米,深2.5分米,它的容积是多少升?

  2、一个长方体油箱的容积是20升。这个油箱的底长25厘米,宽20厘米,油箱的深是多少厘米?

  3、有一个棱长是6分米的正方体水箱,装满水后,倒入一个长方体水箱内,量得水深3分米,这个长方体水箱得底面积是多少?

  4、提高题:p55、16

  五、作业:(略)

五年级数学《容积》教案4

  教学理念:

  数学来源于生活,又回归于生活 。课堂创设动手活动,积累学生的感性认知 。

  教学目标:

  1、使学生理解容积意义,掌握常用的容积单位以及它们之间的进率。

  2、掌握容积和体积的联系与区别,知道容积单位和体积单位之间的关系。

  3、感受升和毫升的实际意义,能应用所学知识解决生活中的简单问题。

  教学重点:

  理解容积意义;掌握容积和体积的联系与区别。

  教学难点:

  理解容积意义;感受升和毫升的实际意义

  教学准备:

  教师:1L量杯,一次性纸杯24个(每组3个),1cm3的自制的小正方体容器,8个1升量杯, 10ml钙铁锌口服液,5ml注射器8支

  学生:2瓶自己带瓶装水,贴有商标的各种饮料瓶,药水瓶,家用油壶,牛奶袋,果汁盒等。

  教学过程:

  一、导课

  师:老师想送朋友一个生日礼物?(出示长方体礼盒)大家想知道是什么礼物吗?

  生:想

  师:是一个生日蛋糕

  师:如果老师告诉你这个礼盒长3分米,宽3分米,高1分米,这个礼盒的体积是多少?

  生:9立方米

  师:猜猜,这个长方体礼盒所容纳蛋糕的体积是多少?

  生:9立方米,8立方米,7.5立方米等(学生很快否定9立方米)

  师:(打开纸盒,露出蛋糕)是你所预料到的吗?如果你过生日收到这样的生日礼物会有何感想?

  生:(试说)太小了

  师:我买了这么大个礼物还小?

  学生:盒子里面太小了

  师: 盒子里面太小了,说的真到位。盒子里所容纳的蛋糕的体积叫盒子的容积。今天我们来学习容积和容积单位。(板书课题:容积和容积单位)

  (设计意图):学生通过求长方体的体积,并估算出长方体里所能容纳面包的体积,当老师打开礼品后,学生会发现与自己所估算的差别太大,突出容积的表象认知)

  二、理解容积的意义

  1、举例,感知容积意义

  出示墨水瓶:指出墨水瓶所能容纳墨水的体积叫做墨水瓶的容积。

  出示茶叶筒:茶叶筒所能容纳茶叶的体积叫做茶叶筒的容积

  2、理解容积的意义

  利用你准备的学具来说说,什么是它们的容积

  【出示课件(第2张幻灯片)】:集装箱、油漆桶(指名说出他们的容积)

  3、归纳概括容积意义

  像粉笔盒、墨水瓶所能容纳物体的体积叫做它们的容积。(学生齐读,老师板书)

  (设计意图:学生在充分的感性实例中积累容积的本质内涵,丰富的积累为学生归纳总结容积意义打下扎实基础)

  4、容积和体积的区别与联系。

  ①区别两者数据给出的不同

  师:同学们,我们继续来看这个长方体礼盒。礼盒放在空间,自身有什么?

  生:体积

  师:打开礼盒,礼盒里面又有什么?

  生:容积

  师:已知礼盒的长、宽、高,能求出礼盒的容积吗?

  生:不能

  师:想求出礼盒的容积,必须要知道(老师边比划边问学生)什么?

  生:礼盒里面空间的长、宽、高

  师:如果老师告诉你礼盒里面的空间是一个棱长为1分米的正方体,你能求出蛋糕的体积吗?

  生:能,1立方分米

  师:蛋糕的体积就是礼盒的容积

  (设计意图:通过学生对直观长方体礼盒的体积与容积的计算,突破求容积需要已知容器里面的数据这一难点)

  ②区别两者本质的不同

  师:【出示课件(第3张幻灯片)】:一个较小的实心长方体;一个较大的空心长方体)问题:谁的体积大;谁有容积?

  学生:指名回答

  ③小组讨论,交流汇报两者异同点(课件出示第4、5张幻灯片)

  师:同学们,体积与容积一字之差,他们有什么区别与联系呢?(小组讨论,交流汇报)

  联系:求的都是物体的体积。

  区别:体积求的是物体占空间的大小。(外部)

  容积求的是物体所能容纳空间的大小。(内部)

  (设计意图:多角度的区分容积与体积的不同,从而使学生较为全面的理解容积的意义,突破容积意义这一教学难点)

  三、教学容积单位

  1、计量容积一般用体积单位。

  常用的体积单位有:立方厘米、立方分米、立方米(学生边说,老师边板书)

  2、认识升和毫升。

  ①观察学具,看看你所带的饮料瓶上所标示的净含量,你发现了什么?(小组交流汇报:发现它们的单位都是L 、 ml而且这些饮料瓶里装的是液体。)

  ②在计量液体的体积时,常用容积单位升(L)和毫升(ml)。当遇到液体体积很大时,例如:计量蓄水池、游泳池里的水的体积,就用立方米。(板书)

  3、感知1L

  ①介绍量杯,观察1L的刻度线,

  ②组长负责,将桌面上的瓶装水倒入1L的量杯中水,其他人仔细观察

  ③生活中,我们常用杯子喝水,组长负责将1L倒入纸杯大小,观察1升水大约几纸杯

  ④ 谈谈,对1L水你有什么感受?

  ⑤生活中那些物品用升做容积单位?(生:油桶、水桶、大瓶饮料瓶的容积)

  4、感知1ml

  (整队纪律,老师将在每组中找一名最快坐好的同学,负责下一个活动。给每组发一个5ml注射器)

  ① 桌面上有一杯有颜色的水,组长负责,用针管吸入1ml水,让大家看看

  ② 再将这1ml水注入一个空纸杯,再让大家看看

  ③ 谈谈,你对1ml水有什么感受?

  ④ 你准备的学具中那些标有毫升,是多少毫升?(举例:眼药水5ml、钙口服液10ml等)

  (设计意图:学生通过吸入1ml带蓝色的水,在注入纸杯的过程中感受1ml的多少,突破学生对1ml由感性认知到理性认知的突破)

  5、1L与1ml的关系

  师:通过前面几个活动,大家了解了1L 、1ml。那么1L 与1ml有怎样的关系呢?仔细观察桌面上的量杯,你就能找到答案

  生:齐答1L =1000ml(板书)

  6、升与立方分米、毫升与立方厘米的关系

  师:计量容积,一般用体积单位,但计量液体的体积时,常用的体积单位是升与毫升。这两者之间有没有关系呢?老师想请一位同学和老师一起做个实验。

  (拿出准备1立方分米的透明正方体,1升有颜色水)

  师:老师会做好你的助手,拿稳盒子,你放心大胆的到,开始!(此个环节老师要装作很神秘,学生在整个过程中很兴奋)

  生:(全场一片惊讶)得出:1升=1立方分米

  师:看来他们之间真有联系,谁能用黑板上的关系推算出1毫升等于多少?

  生:观察得出: 1毫升=1立方厘米

  (设计意图:学生通过这个活动,突破1升=1立方分米的教学难点)

  四、小结

  通过前面有趣的动手操作,闭上眼睛体会:升一般用于计量油桶、水桶、大瓶饮料瓶等的容积;毫升一般用于计量眼药水、药水、小瓶饮料瓶等的容积;而计量、集装箱容积;蓄水池、游泳池里的水的体积,就用立方米。

  五、练习巩固【课件出示(第6、7、8张幻灯片)练习题】

  1、填一填

  一瓶钢笔水的容积是60( ) 摩托车油箱的容积是8( )一瓶矿泉水的容积是600( )

  运货集装箱的容积约是40( )微波炉的容积是45( )

  (集体订正、纠错。)

  2、填出合适的数

  4L =( )ml4800 ml =( )L2.4 L =( )ml785 ml=( )L752cm3=( )dm37.5 L=( )ml36 dm3=( )cm38.04 dm3=( )cm32750ml =( )L

  (引导学生说出每道题是怎么换算的思路)

  3、联系实际【课件出示(第6、7、8张幻灯片)】

  出示生活中用到本节知识的图片(喝水、潜水艇、献血等图片)

  (设计意图:练习有层次,有代表性。由知识题型过度到生活实际,使学生理解数学来源于生活又应用于生活)

  六、结课

  今天我们所学的知识与生活联系非常紧密,大家下去后在生活中找找与我们这节课有关的内容,下节课我们将进一步学习容积的知识。

  板书设计:

  容 积 和 容 积 单 位

  像墨水瓶、粉笔盒、教室等所能容纳物体的体积,叫做它们的容积。

  一般用体积单位:立方厘米(cm3)、立方分米(dm3)、立方米(m3)

  计量液体:升(L)、毫升(ml)、立方米(m3)

  它们间的关系:1L= 1dm3

  1 ml=1 cm3

  1L=1000 ml

五年级数学《容积》教案5

  教学目标

  1、使学生理解容积的意义,掌握容积的计算方法,并能正确地计算物体的容积。

  2、使学生认识常用的容积单位升和毫升,掌握单位之间的进率,明确容积和体积的联系与区别。

  3、使学生在探索未知、研讨成果的过成中品味学习的乐趣,培养学生积极、主动探究问题的学习。

  重难点:

  建立容积和容积单位的观念是重点;理解容积的意义、感知升与毫升的实际大小是难点。

  教学过程

  一、认识容积、引起兴趣

  (一)复习体积

  1、师:我们已经学习了体积,谁愿意说说什么是物体的体积?(生:物体所占空间的大小叫做物体的体积)

  2、老师拿出一个长方体塑料盒(每个小组一个)说:“谁能说说这个长方体的体积指的是哪?(生:用手比一比)师:这个长方体塑料盒的长是15厘米、宽是10厘米、高是5厘米,你能计算出它的体积吗?”(由学生计算并说明方法)

  (二)教学容积的概念。

  (1)老师将长方体纸盒的盖子打开,问:盒内是空的,可以装什么?

  师:我们把这个纸盒所能容纳物体的体积,通常叫做它的容积,如:金鱼缸,里面可以放满水,在这里水的体积就是鱼缸的容积。

  (2)学生举例。

  ①谁能举例说一说什么叫做容积?②从大家举的例子看,只有里面是空的、能够装东西的物体,它才有什么?如果一个长、正方体铁块,它们有容积吗?(板书:容积)

  (3)容积的计算方法。

  师:容积的计算方法,跟体积的计算方法相同,但要从里面量长、宽、高。

  师:这是为什么?(出示一个木盒)

  (三)比较容积与体积

  1、老师指着长方体塑料盒说:“刚才我们算出这个长方体塑料盒体积是750立方厘米,我说它能容纳750立方厘米的东西,你们同意吗?

  2、老师往长方体塑料盒里倒入半盒水,师说:“我认为盒里水的

  体积就是这个长方体塑料盒的容积,你们同意吗?

  二、探究计算容积的方法

  教学过程

  备 注

  1、你们还想了解有关容积的哪些知识?

  2、怎样计算容积呢?师拿着刚才那个长方体塑料盒说:“请每个小组拿出这个盒子,我特别想知道这个盒子的容积,你们能帮我想办法计算出这个盒子的容积吗?请同学们先想一想,然后把你的好主意告诉给组里的同学。(独立思考后小组交流)

  3、集体交流(演示操作)

  4、说说怎样求物体的容积?与求体积一样吗?为什么?(计算方法相同、容积的长、宽、高从里面量,体积从外面量)

  三、动手操作了解容积单位

  1、计算容积就要用到单位,你们知道那些容积单位?怎么知道的?

  2、关于容积单位书上有较详细的介绍,请同学们自学23页,我们为每个小组准备了量杯等学具,同学们可以在学习中使用。

  3、汇报(生:学会什么?还有什么不懂的问题?)学生边汇报老师边板书。

  4、根据学生提出的问题集体探讨:

  (1)1升和1毫升的实际多少和它们之间的关系

  a、谁能告诉同学们1升或1毫升的水有多少?(往1升的量杯里倒入水,就知道1升的多少)

  b、请各组量出1升的水,看一看、掂一掂并想象2升、3升的水有多少。

  c、毫升方法同上

  d、刚才有同学问为什么1升=1000毫升,谁能解答这个问题?(实验证明)

  e、出示事物:饮料包装盒让学生估计能容纳多少饮料?

  (2)探讨1升、1毫升与1立方分米、1立方厘米之间的关系

  谁能证明1升=1立方分米:1毫升=1立方厘米

  5、练习:单位换算

  四、运用知识解决问题

  1、计算油箱的容积

  例5:一个长方体油箱,里面长6分米,宽5分米,高4分米。这个油箱可以装汽油多少升?

  (1)学生尝试练习

  (2)小组讨论,探索解题思路

  (3)反馈

  2、试一试:一个立方体水箱,从里面量高0.8米,这个水箱能装多少升水?

  五、巩固提高

  1、练一练(1)在括号里填上适当的数。

  2、练一练(2)把调查的结果填在括号中。

  3、练一练的3、4、5、6

五年级数学《容积》教案6

  教学目标

  通过练习,进一步巩固长方体、正方体的体积计算方法,进一步体会体积和容积的意义。

  在观察中操作活动中,发展动手能力和空间观念。

  教学重点

  熟练掌握体积计算方法。

  教学难点

  理解体积和容积的意义。

  教具准备

  教师指导与教学过程

  学生学习活动过程

  设计意图

  一、揭示课题

  师板书课题

  二、进行练习

  1、求图形的体积

  请学生看书上的图然后回答:如何计算长方体和正方体的体积。

  2、用体积单位的进率单位换算知识未判断。

  3、填上适当的体积单位

  一块橡皮约10

  一本词典约900

  一个文具盒约0.35

  一个用品约0.6

  学生打开书,观察第1题的两个长方体和1个正方体的长、宽、高分别是多少?

  指否回答否,再让学生计算

  学生先找一找,再让学生交流思考的方法。

  根据自己的判断填上适当的单位。

  学生先说一说计算方法,

  然后进行计算。

  集体订正

  学生仔细观察图,理解题意后,独立完成。

  然后进行全班交流。

  通过让学生独立计算,巩固长方体和正方体的计算方法。

  让学生根据自己的判断填上适当的单位,进一步感受体积单位的实际意义,发展学生的空间观念。

  教师指导与教学过程

  学生学习活动过程

  设计意图

  4、解决实际问题

  引导学生说一说表面积和体积的不同计算方法。

  5、让学生理解两个图形所占的空间就是两个图形的体积;

  三、布置作业

  让学生独立在课堂本上完成第2、6、8、9、10题。

  可以结合实物,指一指。

  第一个图形:4×3×1=12cm;

  第二个图形的体积的策略可以多样化,可以移下面两个侧面,从而转化为一个长方体。

  通过让学生说说计算方法,体会虽然结要相同,但表面积和体积是两个不同的概念。

  发展学生的空间观念。

  板书设计:

五年级数学《容积》教案7

  教学目标

  1.使学生知道容积的含义。

  2.认识常用的容积单位,了解容积单位和体积单位的关系。

  教学重点

  建立容积和容积单位观念,知道容积单位和体积单位的关系。

  教学难点

  理解容积的含义和升、毫升的实际大小。

  教学步骤

  一.铺垫孕伏

  1.什么是体积?

  2.常用的体积单位有哪些?它们之间的进率是多少?

  3.这个长方体的体积是多少?是怎样计算的?

  二.探究新知

  我们已经学习了体积和体积单位,今天我们继续学习一个新的知识:容积和容积单位。(板书课题)

  (一)建立容积概念

  1.学生动手实验(每四人一组,每组一个有厚度的长方体盒,细沙一堆)

  实验题目:计算出长方体盒的体积。

  把长方体盒装满细沙,计算细沙的体积。

  2.学生汇报结果

  长方体盒的体积:先从外面量出长方体盒的长、宽、高,再计算其体积。

  细沙的体积:细沙的体积就是长方体的体积,但要从长方体里面量长、宽、高,再计算其体积。

  教师追问:计算细沙的体积为什么要从长方体里面量长、宽、高?

  3.师生共同小结

  教师指出:这个长方体盒所容纳细沙的体积,就是长方体盒的容积。我们看见过汽车上的油箱,油箱里装满汽油。这就是油箱的容积。长方体鱼缸里盛满水,它就是鱼缸的容积。

  师生归纳:容器所能容纳的物体的体积,就是它们的容积。(板书)

  4.比较物体体积和容积的相同和不同

  相同点:体积和容积都是物体的体积,计算方法一样。

  不同点:体积要从容器外量长、宽、高;容积要从里面量长、宽、高。

  所有的物体都有体积;但只有里面是空的能够装东西的物体,才能计量它的容积。(出示长方体木块)

  (二)认识容积单位

  1.教师指出:计量容积,一般就用体积单位.但是计量液体的体积,如药水,汽油等,常用容积单位升和毫升。(板书:升毫升)

  2.出示量杯:这就是1升的量杯。

  出示量筒:这就是刻有毫升刻度的量筒。

  3.教师演示升和毫升之间的关系:

  ①认识量筒上1毫升的刻度,找出100毫升的刻度。

  ②用量筒量100毫升的红色水倒入1升的量杯,一直到量杯满为止。

  板书:1升=1000毫升

  4.学生演示容积单位和体积单位间的关系:

  ①把1升的红色水倒人1立方分米的正方体盒里

  小结:1升=1立方分米

  ②把1毫升的红色水倒入1立方厘米的正方体盒里

  小结:1毫升=1立方厘米

  5.小结:容积单位有哪些?容积单位和体积单位之间有什么关系?

  6.反馈练习.

  3升=()毫升2700毫升=()升

  2.57升=()毫升640毫升=()升

  2.4升=()毫升3.5升=()立方分米

  500毫升=()升760毫升=()立方厘米

  (三)计算物体的容积.

  1.教学例1

  一种汽车上的油箱,里面长8分米,宽5分米,高4分米.这个油箱可以装汽油多少升?

  8×5×4=160(立方分米)

  160立方分米=160升

  答:这个油箱可以装汽油160升。

  2.反馈练习

  一个长方体水箱,从里面量长12分米,宽6分米,深5分米,这个水箱可装水多少毫升?

  12×6×5=360(立方分米)

  360立方分米=360000毫升

  答:这个水箱可以装水360000毫升。

  三.全课小结

  这节课我们学习了哪些知识?容积和体积有什么不同点?计算容积应注意什么?

  四.随堂练习

  1.填空

  (1)()叫做容积.

  (2)容积的计算方法跟()的计算方法相同。但要从()是长、宽、高。

  (3)6.09立方分米=()升=()毫升

  1750立方厘米=()毫升=()升

  435毫升=()立方厘米=()立方分米

  9.8升=()立方分米=()立方厘米

  2.判断.

  (1)冰箱的容积就是冰箱的体积。()

  (2)一个薄塑料长方体(厚度不计),它的体积就是容积。()

  (3)立方分米()

  3.选择.

  (1)计量墨水瓶的容积用()作单位恰当。

  ①升②毫升

  (2)3毫升等于()立方分米。

五年级数学《容积》教案8

  教学目标

  1、使学生理解容积的意义,掌握容积的计算方法,并能正确地计算物体的容积。

  2、使学生认识常用的容积单位升和毫升,掌握单位之间的进率,明确容积和体积的联系与区别。

  3、使学生在探索未知、研讨成果的过成中品味学习的乐趣,培养学生积极、主动探究问题的学习。

  重难点:

  建立容积和容积单位的观念是重点;理解容积的意义、感知升与毫升的实际大小是难点。

  教学过程

  一、认识容积、引起兴趣

  (一)复习体积

  1、师:我们已经学习了体积,谁愿意说说什么是物体的体积?(生:物体所占空间的大小叫做物体的体积)

  2、老师拿出一个长方体塑料盒(每个小组一个)说:“谁能说说这个长方体的体积指的是哪?(生:用手比一比)师:这个长方体塑料盒的长是15厘米、宽是10厘米、高是5厘米,你能计算出它的体积吗?”(由学生计算并说明方法)

  (二)教学容积的概念。

  (1)老师将长方体纸盒的盖子打开,问:盒内是空的,可以装什么?

  师:我们把这个纸盒所能容纳物体的体积,通常叫做它的容积,如:金鱼缸,里面可以放满水,在这里水的体积就是鱼缸的容积。

  (2)学生举例。

  ①谁能举例说一说什么叫做容积?

  ②从大家举的例子看,只有里面是空的、能够装东西的物体,它才有什么?如果一个长、正方体铁块,它们有容积吗?(板书:容积)

  (3)容积的计算方法。

  师:容积的计算方法,跟体积的计算方法相同,但要从里面量长、宽、高。

  师:这是为什么?(出示一个木盒)

  (三)比较容积与体积

  1、老师指着长方体塑料盒说:“刚才我们算出这个长方体塑料盒体积是750立方厘米,我说它能容纳750立方厘米的东西,你们同意吗?

  2、老师往长方体塑料盒里倒入半盒水,师说:“我认为盒里水的体积就是这个长方体塑料盒的容积,你们同意吗?

  二、探究计算容积的方法

  1、你们还想了解有关容积的哪些知识?

  2、怎样计算容积呢?师拿着刚才那个长方体塑料盒说:“请每个小组拿出这个盒子,我特别想知道这个盒子的容积,你们能帮我想办法计算出这个盒子的容积吗?请同学们先想一想,然后把你的好主意告诉给组里的同学。(独立思考后小组交流)

  3、集体交流(演示操作)

  4、说说怎样求物体的容积?与求体积一样吗?为什么?(计算方法相同、容积的长、宽、高从里面量,体积从外面量)

  三、动手操作了解容积单位

  1、计算容积就要用到单位,你们知道那些容积单位?怎么知道的?

  2、关于容积单位书上有较详细的介绍,请同学们自学23页,我们为每个小组准备了量杯等学具,同学们可以在学习中使用。

  3、汇报(生:学会什么?还有什么不懂的问题?)学生边汇报老师边板书。

  4、根据学生提出的问题集体探讨:

  (1)1升和1毫升的实际多少和它们之间的关系

  a、谁能告诉同学们1升或1毫升的水有多少?(往1升的量杯里倒入水,就知道1升的多少)

  b、请各组量出1升的水,看一看、掂一掂并想象2升、3升的水有多少。

  c、毫升方法同上

  d、刚才有同学问为什么1升=1000毫升,谁能解答这个问题?(实验证明)

  e、出示事物:饮料包装盒让学生估计能容纳多少饮料?

  (2)探讨1升、1毫升与1立方分米、1立方厘米之间的关系

  谁能证明1升=1立方分米:1毫升=1立方厘米

  5、练习:单位换算

  四、运用知识解决问题

  1、计算油箱的容积

  例5:一个长方体油箱,里面长6分米,宽5分米,高4分米。这个油箱可以装汽油多少升?

  (1)学生尝试练习

  (2)小组讨论,探索解题思路

  (3)反馈

  2、试一试:一个立方体水箱,从里面量高0.8米,这个水箱能装多少升水?

  五、巩固提高

  1、练一练(1)在括号里填上适当的数。

  2、练一练(2)把调查的结果填在括号中。

  3、练一练的3、4、5、6

五年级数学《容积》教案9

  教材分析

  1、通过具体的实验活动,了解体积和容积的实际意义,初步理解体积和容积的概念。

  2、体积与容积的学习是在学生认识了长方体和正方体的特点以及长方体和正方体的表面积的基础上进行的。这一内容是进一步学习体积的计算方法等知识的基础,也是发展学生空间观念的重要载体。但体积和容积又是学生比较容易混淆的两个概念。

  学情分析

  数学教学活动必须建立在学生的认知发展水*和已有的知识经验基础上。对于概念教学,比较抽象,难于理解。学生们有着丰富的生活经验,从他们身边的事物出发,把概念变得形象化、具体化,学生会更容易接受。本课的重点是初步理解体积和容积的概念。体积的概念是物体所占空间的大小。

  教学目标

  知识与技能目标:通过具体的实验活动,了解体积和容积的实际意义,初步理解体积和容积的概念。

  过程与方法目标:在操作、交流中,感受物体体积的大小、发展空间观念。

  情感、态度和价值观目标:增强合作精神和喜爱数学的情感。

  现代教学手段:使用多媒体课件,使抽象变直观,发挥现代教育手段的优势。

  教学重点和难点

  教学重点:通过具体的实验活动,初步理解体积和容积的概念。

  教学难点:理解体积和容积的联系和区别。

  教学过程:

  (一)情境导入:

  师:今天老师和同学们一起来探究《体积与容积》这一课。

  师:同学们,你们知道乌鸦喝水的故事吗?为什么乌鸦最后能喝到水呢?谁能把这个故事讲给大家听?(生自由发言

  (1)认识体积

  1、初步感受空间。

  师:老师往水里放一个苹果,苹果占空间吗?放一枚硬币,硬币占空间吗?橡皮占空间吗?铅笔盒占空间吗?桌子呢?凳子呢?还有什么东西占空间?师:是不是所有的东西都占空间?在水里占空间,拿出来呢?(也占空间)板书:空间。

  2、空间也有大小。

  师:橡皮与铅笔盒比谁占得空间大,谁占得空间小?桌子与凳子呢?板书:大小

  3、体积的概念。

  4、比较体积大小。

  香蕉和鸡蛋。

  老师叫一位学生上台,问:“你有体积吗?老师有体积吗?谁的体积大?”请这位同学变换位置,站在教室的不同地方,问:“它的体积变了吗?他的什么变了?说明了什么?”(物体的位置变化了,但体积不变)

  师:“橡皮泥是什么形状的?(长方体。)把橡皮泥捏成球体,同时问:“它这时是什么形状?(球体)它的体积变了吗?他的什么变了?(形状)说明了什么?(物体的形状变化了,但体积不变。)生活中你见到过这样的事情吗?(生:妈妈把一团面擀成一个薄饼。生:奶奶把一个黄瓜切成了一片片的。)

  (2)认识容积

  1、出示:饮料瓶,水杯,茶叶罐。

  师:请迅速给这三个物体按体积由大到小的顺序排一排。

  2、认识容器。

  师:他们是用来干什么的?(学生1:装饮料、学生:2盛水,学生3:装茶叶)教师:容纳东西(板书:容纳东西)

  师:还有什么能用来装东西?

  师:像脸盆、油桶、水杯这些能容纳东西的物体,我们称之为容器。

  板书:容器

  3、感受物体容积。

  4、出示容积概念

  (四)复习巩固,升华主题

  1、出示课件。谁搭的体积大?

  2、出示课件。那一个的体积大?

  3、出示课件。

  (五)总结评价

  师:你学到了什么?还有什么不明白的吗?对自己的表现进行评价。

五年级数学《容积》教案10

  设计说明

  在本节教学中,为了突破教学的重、难点,给学生创设良好的学习情境,让学生运用已有的生活经验,通过观察、实验、归纳和应用等数学活动,进一步发展空间观念,具体设计说明如下:

  1.尊重学生,相信他们能行。

  每个学生都有自己的生活背景,家庭环境和一定的文化感受,从而导致不同的学生有不同的知识基础、思维方式和解决问题的策略。教师应充分的相信学生通过自己的努力能够完成所学的内容。学生已经获得了大量的知识基础和生活经验,所以本设计充分相信学生,把大量的时间留给学生。对容积概念的理解,体会容积和体积之间的关系,推导容积单位之间的关系等,都引导学生自己去概括总结。教师真正起到组织者和引导者的作用。

  2.将生活中的问题与数学学习有机地结合。

  联系生活实际展开教学,能让学生感受到学习数学的必要性,也能提高学生学习数学的兴趣。本设计利用课件让学生感受生活中的容器,如集装箱、电冰箱、水杯、包装盒、油桶等,并结合学生课前准备的一些矿泉水瓶、饮料盒等,说一说这些物品有什么特点,进而引出容积的含义。以问题的形式,将生活中的知识与数学学习有机结合,让学生感受到学习数学的必要性和趣味性,这样不但能加深学生对容积概念的认识,还能使学生进一步理解物体的体积和容积的区别与联系。然后通过课件展示探究过程,加深学生对容积单位的理解。

  课前准备

  教师准备:PPT课件

  学生准备:矿泉水瓶、饮料盒等

  教学过程

  ⊙复习旧知,导入新课

  师:同学们,之前我们学习了体积和体积单位,谁来说一说什么是体积?常用的体积单位有哪些?它们之间的进率是多少?正方体和长方体体积的计算公式是什么?

  生1:物体所占空间的大小叫做物体的体积。

  生2:常用的体积单位有立方厘米、立方分米、立方米,每相邻两个体积单位之间的进率是1000。

  生3:V正=a3V长=abh

  师:同学们对前面学习的知识掌握得非常好,相信对今天学习的新知识会掌握得更好。今天我们来学习容积和容积单位。(板书课题:容积和容积单位)

  设计意图:从学生已有的知识经验开始教学,有利于引导学生对新旧知识间的联系的理解,激发学生的学习兴趣。

  ⊙联系生活,探究新知

  1.容积的含义。

  (1)利用课件让学生感受生活中的容器,如集装箱、电冰箱、水杯、包装盒、油桶等。

  结合老师让学生课前准备的一些矿泉水瓶、饮料盒等,说一说这些物品有什么特点。

  (都能够容纳物体)

  (2)说一说生活中你还见过哪些物品能够容纳物体。

  师:能容纳其他物体的物品,称为容器。

  师:大家观察矿泉水瓶、饮料盒的包装盒上有许多信息,你知道它们表示什么意思吗?

  2.比较容积和体积。

  (1)自学教材38页容积和容积单位,然后说一说你从教材中学到了什么。

  ①容器所能容纳物体的体积,通常叫做它的容积。

  ②计量容积一般用体积单位,但是计量液体的体积,如水、汽油等,常用容积单位升和毫升。

  ③长方体容器容积的计算方法和体积的计算方法相同,一般从容器的里面测量长、宽、高。

  (2)谁来举例说一说什么是容积呢?

  (3)质疑:是不是所有的物体都有容积呢?

  明确:所有的物体都有体积,但只有里面是空的、能够装东西的物体才有容积,也就是说物体一定都有体积,但不一定都有容积。

  (4)测量容积。

  小组内讨论:怎样测量一个长方体空盒子的容积。

  方法一把盒子装满水,再把水倒入量筒里,直接可以测量出盒子的容积。

  方法二从里面测量长、宽、高分别是多少。

  讨论:为什么要从里面测量长、宽、高?

  明确:容积是物体内部所能容纳物体的那一部分空间的大小,体积是物体外部所占空间的大小。

  师:从这句话中,我们知道物体的体积和容积有哪些不同点?

  (体积要从容器外面测量数据;容积要从容器里面测量数据)

  3.容积单位。

  (1)计量容积时一般用体积单位,但是计量液体的体积,如药水、汽油等,常用容积单位升和毫升。

  (2)单位间的进率。

  板书:1L=1dm3

  1mL=1cm3

  1L=1000mL

  设计意图:

  通过课件展示和探究过程加深学生对容积单位的理解。


《找质数》五年级数学教案3篇(扩展5)

——五年级下册数学教案10篇

五年级下册数学教案1

  【教学内容】

  教科书第58页综合应用:设计长方体的包装方案。

  【教学目标】

  1、通过设计长方体的包装方案让学生认识到在体积相同的情况下,表面积与它的长、宽、高的相差程度有关的道理。

  2、通过数学活动,运用所学知识,获得解决简单实际问题的经验、方法以及成功的体验。

  3、培养学生的创新意识、策略意识、实践能力和空间观念。

  【教学重点】

  让学生体验到,在体积相等的情况下,要使表面积较小,长、宽、高应越接近的道理。

  【教具学具】

  为每组学生准备8个规格为16×8×4(单位:cm)的长方体纸学具盒,包装纸,直尺,透明胶,剪刀等。

  【教学过程】

  一、课前引入

  师:观察自己桌上的学具盒,你发现这些学具盒有什么特点?

  生:形状都是长方体,每个盒子的规格都是16×8×4(单位:cm),每组都有8个。

  师:如果我们要将这8个长方体盒子包装成1盒,怎样包装更省包装纸呢?今天我们就运用所学知识解决这个问题。(板书课题)

  二、设想与摆放

  1、设想与摆放

  设想:

  (1)要将这些长方体的盒子包装起来,在包装的过程中要考虑哪些问题呢?

  (2)要达到节省包装纸的目的,应该考虑哪些问题?学生思考后发表意见:要想节约包装纸,学具盒中间不能留空隙,表面要*整;摆法不同,所用的纸的大小不同;接头处尽量不要浪费等等。

  (3)明确长方体盒子的摆法不同是造成包装纸用量大小的主要原因。

  2、记录与计算

  (1)你认为造成所需包装纸大小不同的主要原因是什么?所需包装纸的面积=所摆的长方体的表面积+接头部分用纸量(按2dm2计算)

  生:摆成的大长方体的表面积越大,所用的包装纸越多,反之就少。

  (2)究竟哪种摆法会更节约包装纸呢?

  师:你们可以先将几个盒子摆一摆,量出所摆的长方体的长、宽、高,计算出摆成的不同长方体的表面积,从而算出所用包装纸的面积,并将数据和计算过程记录下来。

  (3)小组合作:记录3种不同摆法下的包装纸用量,并选择一种用纸最少的方案。

  为什么这种方案的用纸量会最少?在全班进行交流。

  三、交流与比较

  比一比谁的方案用纸少,并分析出用纸量不同的原因。

  重点思考并讨论:

  为什么同样是将8个学具盒打捆包装,表面积的大小会不相同?影响表面积大小的主要原因是什么?将分析的原因记录下来。

  四、发现与思考

  通过本次包装设计,你有什么发现?

  1、物体重合的面积越大,表面积就越小,包装用的纸也就越少。

  2、同样的体积下,长方体的表面积与它的长、宽、高的长度有关,长、宽、高的长度越接近,表面积就越小,当长、宽、高相等时,它的表面积最小。

  五、知识拓展

  师:解决用料省的问题在生活中有什么意义?联系实际谈自己的.想法。

  师:现在老师这里有20本数学书,想想看,怎样摆表面积最小?为什么?

  六、课堂小结

  这节课我们学习了什么?你有什么收获?说一说。

五年级下册数学教案2

  教学目标:

  1、认识常用的体积单位:立方厘米、立方分米、立方米,在数学活动中建立体积是1立方厘米、1立方分米、1立方米的空间观念。

  2、自主探索得出相邻体积单位之间的进率,发展学生的空间观念,培养学生的推理能力。

  3、培养学习类比能力,从已有知识——面积单位引发思考,初步了解体积单位和面积单位之间的联系与区别。

  4、在动手操作、观察比较、质疑反思等活动中,培养团队意识,提升合作精神与质疑能力。

  教学重点:

  初步建立体积是1立方厘米、1立方分米、1立方米的空间观念,能正确应用体积单位估算常见物体的体积。

  教学难点:

  通过探索,自主推算出相邻体积单位间的进率。

  教学准备:

  多媒体课件、体积单位模型、彩泥、魔方等。

  教学过程:

  一、创设情境,引发思考

  师:上一节课,我们认识了体积,什么是物体的体积?

  问:体积有大有小,小胖和小巧运用所学知识搭积木、比体积。哪个体积比较大?(生生交流)

  师:今天这节课就让我们一起来探究体积单位(揭示课题:体积单位)。

  二、合作学习,探究新知

  (一)探寻学生已有知识:

  问:关于体积单位你已经了解了些什么?让我们先相互交流一下!(生生交流)

  (预设:知道常用体积单位有立方厘米、立方分米、立方米,并会用字母表示)

  【设计意图:教学是从学生原有的基础和经验出发的,了解学生已知的,分析他们未知的,有针对性地设计教学,才能构建高效课堂】

  (二)建立1cm3、1dm3、1m3的空间观念

  1、建立1立方厘米的空间观念:

  (1)初步感知1cm3有多大:

  问:让我们先畅所欲言,你认为1cm3有多大?哪些物体接近1 cm3?(课件展示)

  【设计意图:“你认为1cm3有多大?”引导学生用自己的方式表达自己心中1立方厘米的大小,或用身边的物体参照、或用手势比划,或对或错,形式不一的表达方式,更激发了学生探究的热情——究竟1立方厘米有多大。】

  <<<123>>>

  (2)触类旁通,定义1 cm3的大小:

  师:我们已经知道边长为1cm的正方形,面积是1cm2,你能触类旁通定义1 cm3的大小吗?(同桌讨论)

  【设计意图:在教学中,我们应当注意对学生迁移意识的培养,也就是说要注重运用类比的思想。】

  (3)进一步感知1cm3的大小:

  做一做:请大家四人为一小组,用彩泥捏出一些体积是1立方厘米的正方体。拼一拼,2立方厘米、5立方厘米、10立方厘米分别有多大。

  (4)想一想,填一填:

  师:我们知道计量一个物体的体积,就是看它含有多少个体积单位。下列长方体或正方体是用几个1立方厘米的正方体积木搭出的?体积是多少?(课件展示)

  2、建立1立方分米、1立方米的空间观念:

  (1)举一反三:从1 cm3定义1 dm3、1 m3的大小。(生生交流)

  【设计意图:在类比的基础上尝试举一反三,不仅使数学知识容易理解,而且对概念的记忆有水到渠成之感,自然、简洁,从而激发起学生的创造力。】

  (2)想象一下:1 dm3、1 m3有多大?哪些物体接近1 dm3、1 m3?(学生举例,课件、教具辅助)

  【设计意图:学会定义1dm3和1m3,不等同于就能正确感悟它们实际的空间大小,教师事先准备了3阶魔方、4阶魔方和1个标准1dm3的模型,让学生选择哪一个立方体更接近1dm3,学生通过观察、猜测、验证,从而获得对知识的真正意义。】

  (3)学生活动:4个同学为一组,手拉手,围出一个大约1m3的空间。

  【设计意图:用3根1m长的木条做成一个互成直角的架子,放在墙角,想象一下1m3的空间有多大。这样的想象也能提升学生对1立方米的空间观念,但是如果能创造一个有趣的学生活动,让学生们在实践活动中体验1立方米的大小,不仅提升了团队协作能力,而且在做中学,更能有效帮助学生建立体积是1立方米的空间大小。】

  3、练习(用合适的体积单位表示下面物体):

  一块橡皮的体积约是8( )。

  一台录音机的体积约是10( )。

  运货集装箱的体积约是40( )。

  一本新华字典的体积约是0.4( )。

  一个西瓜的体积约是5( )。

  一间教室的体积约是180( )。

  (三)继续类比,探究相邻体积单位间的进率:

  1、师:学好知识要能触类旁通,今天我们从已知知识cm2、dm2、m2出发,探索了cm3、dm3、m3这一新知识,同时我们也要关注它们的区别,它们有哪些区别呢?(同桌交换意见)

  2、追问:cm2、dm2、m2每相邻两个面积单位间的进率是100,猜想一下cm3、dm3、m3相邻体积单位间的进率又是多少呢?(学生猜想)

  【设计意图:安排“猜想”有两层含义,一是进一步引导学生关注到面积单位与体积单位间的区别,更重要的是为了让学生掌握知识、提升能力,我们必须带领学生“再创造”,虽然知识是前人证明和研究出来的,但我们更应该让学生也像数学家们一样学会自己发现,“没有大胆的猜想就做不出伟大的发现”(牛顿)。】

  3、验证:你们有什么好方法证明1cm3和1dm3间的关系呢?(课件辅助演示1个——10个——100个——1000个的过程)

  【设计意图:在小学数学教学中,我们应当重视“猜想—验证”这一重要思想方法的渗透与培养,使学生在猜想验证中获得探究的乐趣。】

  4、运用:同桌合作,请说一说1dm3和1m3间的关系。(课件演示)

  5、拓展:通过探究,我们知道每相邻两个体积单位之间的进率是1000,你们还有什么疑问吗?(预设:你能试着说一说1cm3和1m3之间的关系吗?)

  【设计意图:学生自己提出探索1cm3和1m3之间的关系,进一步激发学生探究的热情。同时也继续渗透类比的思想方法,或用100×100×100,或用1000×1000,鼓励学生能多角度思考与验证,收获成功的喜悦。】

  三、动手操作,质疑反思:(机动,也可作为课后拓展)

  学生活动:用一些棱长为1厘米的小正方体,做下面的活动。

  1、用4个小正方体可以摆成一个大正方体吗?

  2、最少要用多少个小正方体才可以摆成一个大正方体?

  3、你能再摆一个大一些的正方体吗?用了多少个小正方体?

  【设计意图:以“猜想—验证”为核心,引导学生多角度探索问题,发现规律,并打通与体积单位进率之间的关系。】

  四、总结全课,感悟学习方法:

  师:通过今天的学习,你有哪些新的收获?(生生互动)

  小结:今天我们从已知知识cm2、dm2、m2出发,探索了cm3、dm3、m3这一新知识,学习就要学会触类旁通、举一反三。

五年级下册数学教案3

  【教学目标】

  1.使学生通过观察、猜想、验证、理解并掌握3的倍数的特征。

  2.引导学生学会判断一个数能否被3整除。

  3.培养学生分析、判断、概括的能力。

  【重点难点】

  理解并掌握3的倍数的特征。

  【复习导入】

  1.学生口述2的倍数的特征,5的倍数的特征。

  2.练习:下面哪些数是2的倍数?哪些数是5的倍数?

  324 153 345 2460 986 756

  教师:看来同学们对于2、5的倍数已经掌握了,那么3的倍数的特征是不是也只看个位就行了?这节课,我们就一起来研究3的倍数的特征。

  板书课题:3的倍数的特征。

  【新课讲授】

  1.猜一猜:3的倍数有什么特征?

  2.算一算:先找出10个3的倍数。

  3×1=3 3×2=6 3×3=9

  3×4=12 3×5=15 3×6=18

  3×7=21 3×8=24 3×9=27

  3×10=30……

  观察:3的倍数的个位数字有什么特征?能不能只看个位就能判断呢?(不能)

  提问:如果老师把这些3的倍数的个位数字和十位数字进行调换,它还是3的倍数吗?(让学生动手验证)

  12→21 15→51 18→81 24→42 27→72

  教师:我们发现调换位置后还是3的倍数,那3的倍数有什么奥妙呢?

  (以四人为一小组、分组讨论,然后汇报)

  汇报:如果把3的倍数的各位上的数相加,它们的和是3的倍数。

  3.验证:下面各数,哪些数是3的倍数呢?

  210 54 216 129 9231 9876

  小结:从上面可知,一个数各位上的数字之和如果是3的倍数,那么这个数就是3的倍数。(板书)

  4.比一比(一组笔算,另一组用规律计算)。

  判断下面的数是不是3的倍数。

  3402 5003 1272 2967

  5.“做一做”,指导学生完成教材第10页“做一做”。

  (1)下列数中3的倍数有。

  14 35 45 100 332 876 74 88

  ①要求学生说出是怎样判断的。

  ②3的倍数有什么特征?

  (2)提示:①首先要考虑谁的特征?(既是2又是5的倍数,个位数字一定是0)

  ②接着再考虑什么?(最小三位数是100)

  ③最后考虑又是3的倍数。(120)

  【课堂作业】

  完成教材第11~12页练习三的第4、6、7、8、9、10、11题。

  【课堂小结】

  同学们,通过今天的学习活动,你有什么收获和感想?

  【课后作业】

  完成练习册中本课时练习。

  3的倍数的特征

  一个数各位上的数字之和是3的倍数,那么这个数就是3的倍数。

  教学3的倍数的特征时,教师要注意学生的自主探索过程,通过猜一猜、算一算、想一想、验一验、比一比等教学环节,循序渐进地让学生参与到学习中来,但教师在想一想这个环节中要进行适当点拨、引导,这样效果更明显。

五年级下册数学教案4

  教学内容:

  义务教育课程标准实验教科书《数学》(新世纪版)五年级下册第六单元第82-83页《包装的学问》。

  教材分析:

  本课教学内容是在学生掌握了长方体特征及表面积计算等相关知识的基础上,进一步探究几个相同长方体组合成新长方体的多种方案以及使其表面积最小的最优策略。教材把《数学与购物》这一系列数学实践活动安排在第六单元后,主要意图是通过这样一系列与生活紧密联系的实践活动,培养学生综合应用所学的知识解决实际问题的能力。在这一系列实践活动中,教材安排了三个内容,主要涉及数与代数、空间与几何两部分知识,在解决生活实际问题的过程中,分别培养了学生的估算意识、计算中的最优策略以及多个长方体叠放后使其表面积最小的最优策略。本课教学内容是这一系列实践活动中的最后一个内容。

  包装问题在日常生活与生产中经常遇到,教材创设包装的情境,使学生综合应用表面积等知识来讨论如何节约包装纸的问题,它不仅培养学生的节约意识,更体现了数学的优化思想。有助于培养学生空间观念,提高解决实际问题的能力,感受数学与实际生活的密切联系。同时有利于学生感悟数学思想,积累数学活动经验。

  学情分析:

  1、学生已有的知识基础。

  在本课学习之前,学生已熟练掌握了长方体、正方体的特征,能准确、迅速地计算出单一物体的棱长、表面积、体积,能把几个相同的正方体组合成新的正方体。初步接触了由两个相同的正方体拼成一个长方体后表面积发生的变化。在第二单元探索活动《露在外面的面》中,又训练了学生有序的观察能力和计算露在外面的面 面积的能力。

  2、学生已有的生活经验。

  学生大都接触过物品的包装,能清楚地意识到用包装纸包装起来的部分就是求物体的表面积。

  3、学生学习本课内容可能遇到的困难及学习方式的研究。

  学生在探究由四个或者多个相同的长方体组合成新的长方体时,对于方案的多样化与策略的最优化可能存在问题,通过动手操作大多数学生可以得到由4个相同长方体组合成新的长方体时的六种拼摆方案,但思维可能会无序,对于方法的归纳和总结也存在困难。因此以小组合作的活动方式可以说是本课的较佳路径,让同伴之间相互协作,共同归纳总结,有助于培养学生思维的有序性。

五年级下册数学教案5

  信息社会已经到来,信息的获取、分析处理将成为现代人最基本的能力和素质的标志。本课正是基于这一理念,选择具有丰富现实背景的学习材料,学生了解了折线统计图的特点、作用后,在应用部分设置了分析数据、处理信息的练习题,以培养学生根据数据、图像分析事物并作出合理推断的能力。

  1、了解折线统计图的特点和作用,初步学会折线统计图的绘制方法。

  2、能分析折线统计图,培养学生利用数据、图像分析、判断、预测问题结果或趋势的能力。

  3、让学生体验折线统计图在实际生活中应用的广泛性和重要性,培养正确的数学观,并通过相互交流、讨论,培养合作交流的能力。

  一、引入:

  1、出示:条形统计图

  (1)某电影院上月各类影片观众人数统计图

  (2)新芽书苑20xx年3月第一星期故事书销售情况统计图

  2、提问:你已知道了条形统计图的哪些知识?

  3、现实生活中还有另一种统计图,你见过吗?出示:折线统计图。

  (1) 上虞电影院20xx年(1~6)月观众人数统计图。

  (2) 百官镇一农户96~20xx年人均收入统计图。

  二、展开:

  (一)折线统计图的特点和作用。

  1、四人小组讨论;条形统计图和折线统计图有什么相同点和不同点?

  (1) 学生自由讨论交流。

  (2) 这两类统计图最大的区别是什么?

  2、结合条形统计图的特点,归纳折线统计图的特点。

  3、从折线统计图上我们能看出数量的多少吗?还能了解到什么?

  4、结合课本进一步深入了解折线统计图的特点和作用。

  (二)折线统计图的绘制。

  1、你认为哪幅条形统计图用折线统计图来绘制更合适?

  2、小组讨论:把这幅条形统计图绘制成折线统计图你有什么办法?

  A、小组讨论 B、汇报 C、提问:绘制的关键是什么?

  3、学生尝试绘制。

  (1) 出示“我们的调查资料”。

  (2) 想一想,哪几组数据用折线统计图绘制比较合适?

  (3) 请选择其中一组数据绘制。

  (4)小组交流绘制情况,分析增减变化的情况,并 推断发展趋势。

  (5)大组交流绘制情况,并纠错。

  三、应用

  1、出示:李x(住院)的体温变化情况统计图,提问:看图后,你能推断出什么?

  2、出示:百官镇一农户96~20xx年人均收入统计图。

  思考:A、看图后你有什么感受?

  B、你能提出哪些数学问题?

  3、对比练习:

  (1)出示:“吉祥鞋店20xx年凉鞋、棉鞋销售情况统计图”。

  思考:A、两种鞋的销售趋势分别怎样?

  B、你有什么建议?

  (3) 出示:两家游泳衣专卖店的销售情况统计图。

  思考:A、比较这幅图,说说哪一幅比较符合我们的生活实际?

  B、猜猜为什么乐乐专卖店会有这样的销售现象

  四、总结

  你又有什么新收获?你是用什么方法学会的?

  五、课外作业

  省略

五年级下册数学教案6

  【教学内容】

  教科书第58页综合应用:设计长方体的包装方案。

  【教学目标】

  1、通过设计长方体的包装方案让学生认识到在体积相同的情况下,表面积与它的长、宽、高的相差程度有关的道理。

  2、通过数学活动,运用所学知识,获得解决简单实际问题的经验、方法以及成功的体验。

  3、培养学生的创新意识、策略意识、实践能力和空间观念。

  【教学重点】

  让学生体验到,在体积相等的情况下,要使表面积较小,长、宽、高应越接近的道理。

  【教具学具】

  为每组学生准备8个规格为16×8×4(单位:cm)的长方体纸学具盒,包装纸,直尺,透明胶,剪刀等。

  【教学过程】

  一、课前引入

  师:观察自己桌上的学具盒,你发现这些学具盒有什么特点?

  生:形状都是长方体,每个盒子的规格都是16×8×4(单位:cm),每组都有8个。

  师:如果我们要将这8个长方体盒子包装成1盒,怎样包装更省包装纸呢?今天我们就运用所学知识解决这个问题。(板书课题)

  二、设想与摆放

  1、设想与摆放

  设想:

  (1)要将这些长方体的盒子包装起来,在包装的过程中要考虑哪些问题呢?

  (2)要达到节省包装纸的目的,应该考虑哪些问题?学生思考后发表意见:要想节约包装纸,学具盒中间不能留空隙,表面要*整;摆法不同,所用的纸的大小不同;接头处尽量不要浪费等等。

  (3)明确长方体盒子的摆法不同是造成包装纸用量大小的主要原因。

  2、记录与计算

  (1)你认为造成所需包装纸大小不同的主要原因是什么?所需包装纸的面积=所摆的长方体的表面积+接头部分用纸量(按2dm2计算)

  生:摆成的大长方体的表面积越大,所用的包装纸越多,反之就少。

  (2)究竟哪种摆法会更节约包装纸呢?

  师:你们可以先将几个盒子摆一摆,量出所摆的长方体的长、宽、高,计算出摆成的不同长方体的表面积,从而算出所用包装纸的面积,并将数据和计算过程记录下来。

  (3)小组合作:记录3种不同摆法下的包装纸用量,并选择一种用纸最少的方案。

  为什么这种方案的用纸量会最少?在全班进行交流。

  三、交流与比较

  比一比谁的方案用纸少,并分析出用纸量不同的原因。

  重点思考并讨论:

  为什么同样是将8个学具盒打捆包装,表面积的大小会不相同?影响表面积大小的主要原因是什么?将分析的原因记录下来。

  四、发现与思考

  通过本次包装设计,你有什么发现?

  1、物体重合的面积越大,表面积就越小,包装用的纸也就越少。

  2、同样的体积下,长方体的表面积与它的长、宽、高的长度有关,长、宽、高的长度越接近,表面积就越小,当长、宽、高相等时,它的表面积最小。

  五、知识拓展

  师:解决用料省的问题在生活中有什么意义?联系实际谈自己的想法。

  师:现在老师这里有20本数学书,想想看,怎样摆表面积最小?为什么?

  六、课堂小结

  这节课我们学习了什么?你有什么收获?说一说。

五年级下册数学教案7

  教学目标:

  1.知识技能:经历探索分数基本性质的过程,理解分数的基本性质,能运用分数的基本性质,把一个分数化成指定分母或分子而大小不变的分数。

  2.思考与问题解决:经历观察讨论,操作等学习活动,能对分数的基本性质作出简要的,合理的说明,培养学生的观察,比较,归纳,总结概括的能力。

  3.情感态度:经历观察,操作和讨论等数学学习活动,使学生进一步体验数学学习的乐趣,鼓励学生敢于发现问题,培养学生勇于解决问题的学习品质。

  教学重点:

  探索,发现和掌握分数的基本性质,并能运用分数的基本性质解决问题。

  教学难点:

  自主探索,归纳概括分数的基本性质。

  教具学具准备:

  多媒体课件,正方形纸,彩笔。

  教学设计:

  一、创设情境,导入新课:

  1、课件分别出示两张不同的孙悟空的照片。师:学们仔细看看这两张照片,你有什么发现?(指名回答)。

  2、教师引导交流:孙悟空本人没有改变,只不过是外表的打扮装饰发生了改变。

  3、学生初步感知了什么变了而什么却没有变的概念。

  4、教师导入新课:今天我们就来探讨什么变了而什么没有变的有关内容。教师板书课题:分数的基本性质设计意图:利用学生感兴趣的图片来吸引学生的注意力和观察能力,为下一步学习营造一个轻松活跃的氛围。

  二、探究新知。

  (一)

  1.师:在我们在学习这个新的内容之前,我们首先来复习一下除法与分数的关系。学生回答教师板书:

  被除数=课件出示:120÷30=(120×2)÷(30×2)=(120÷10)÷(30÷10)=

  2.同学们说说这几道相等吗?(指名回答)。

  3.教师引导说出商不变的性质,课件出示商不变的性质的定义。

  设计意图:通过复习商不变的性质,为下一步更容易的学习分数的基本性质打下基础。

  (二)教学新知。

  1.师:请同学们拿出课前准备好的正方形纸,把手中的纸*均折成4份,其中把3份图上你喜欢的颜色。

  2.学生操作,教师巡视并特别提醒学生注意“*均分”。

  3.展示学生的作业。

  4.师:现在请同学们把正方形纸*均分成8份,16份,分好之后你有什么发现?(指名回答)。

  5.教师归纳总结,并课件出示:设计意图:同一张纸能*均分成不同的份数,拓展学生的思维能力。

  6.引导学生观察:

  观察它们的分子和分母是怎样变,学生观察,思考,交流后,教师集体指导观察,并板书:

  教师归纳总结后,学生完成课本66页的填空题,完成后集体回答。

  设计意图:学生通过动手操作发现一些表象,但这些表象还须上升为科学理论,这就需要学生能透过表象识别表现后蕴藏的规律,这才能知其然且知其所以然,便于以后举一反三,解决同类相关问题。

  7.课件出示:(通知互相讨论)

  (1)相比较,看看分子分母有什么变化?

  (2)在这个变化中,你们发现了什么规律。

  8.教师引导学生说出:分数的分子和分母同时乘或除以相同的数(0除外)分数大小不变。这就是分数的基本性质。(教师特别强调“同时”“同一个数”)。

  9.教师提出疑问:为什么要0除外呢?学生回答,教师归纳:因为0和任何数相乘都得0,而分数的分母是不能为0的。

  10.同学们,现在你们来看看分数的基本性质和你们以前学习过得商不变性质有什么不同呢?(课件出示两性质作对比)

  师:分数的基本性质和商不变性质的规律是一致的。

  三、巩固强化,拓展应用。

  (1)课件出示:(集体回答)。

  (2)指出下列分数是否相等。(指名回答)。

  (3)把和化成分母是10而分数大小不变的分数。(指名到台上板演)。

  (4)课件出示小故事。

  有位老爷爷把一块地分给三个儿子。老大分到了这块地的,老二分到了这块地的。老三分到了这块的。老大、老二觉得自己很吃亏,于是三人就大吵起来。刚好阿凡提路过,问清争吵的原因后,哈哈的笑了起来,给他们讲了几句话,三兄弟就停止了争吵。

  你知道,阿凡提为什么会笑吗?他对三兄弟讲了哪些话?(让学生课后去思考)

  设计意图:多样的练习可以让学生及时巩固所学知识,有调动了学习的积极性。

  四、回顾总结,梳理新知。

  同学们,你们对分数又有了哪些新的了解呢?板书设计:分数的基本性质数的分子和分母同时乘或除以相同的数(0除外)分数大小不变。这就是分数的基本性质。

  教学反思:

  1.创设情境,激发学生兴趣。出示孙悟空的照片激发学生的兴趣,吸引学生的注意力。

  2.手脑并用,在操作中深入感知分数。请同学们用一张正方形纸片,动手折一折,通过三次的对折,每次找出一个和相等的分数,比较涂色部分大小有没有变化?(没有)。那么得到了什么结论?教师引导学生观察分子,分母的变化,经历总结得出:分数的分子和分母同时乘或除以相同的数(0除外)分数大小不变。学生对此进行巩固后,再引导学生说出:0除外。学生在动手实践的过程中动脑思考,很快地突破了重难点,取得很好的效果。

  3.巩固练习,围绕中心。在设计练习的过程中,采取多种形式呈现,使学生加深对分数基本性质的理解,激发了学生学习的兴趣,使每个学生都能理解所学知识,学有所获,并进一步学习约分和通分打下了良好的基础。

五年级下册数学教案8

  教学内容:观察物体

  教学目标:

  1.让学生经历观察的过程,认识到从不同的位置观察物体,所看到的形状是不同的。能辨认从正面、左面、上面观察到的简单物体的形状。

  2.培养学生从不同角度观察,分析事物的能力。

  3.培养学生构建简单的空间想象力。

  重点:帮助学生构建初步的空间想象力。

  难点:帮助学生构建初步的空间想象力。

  教学过程:

  一、谜语导入

  请同学们猜谜语:“左一片、右一片,摸得着,看不见,是什么呢?”(耳朵)为什么能看见别人的耳朵,却看不见自己的耳朵呢?因为我们观察的角度不一样,那么今天我们就一起来进一步研究观察物体(板书)

  二、合作探究

  (一)整体观察

  1.教师将一个对面涂有相同颜色的长方体举起静止不动,叫学生观察并提问:

  你观察到的正方体是什么样的?

  在你的位置上观察,你看到了哪几个面?

  2.学生汇报交流。

  学生自由走动,观察。汇报交流。

  3.解释应用

  教师出示两个正方体的立体图,一个有虚线,另一个没有。

  提问:谁能用刚学到的知识解释一下正方体为什么这样画?

  学生解释说明。

  (二)分别从三个面进行观察(出示例1)

  1.教师提问:我们分别从几个不同的方向去观察这个图形,看看它的正面、左面以及上面分别是什么形状的图形,把它们分别划出来。

  学生离开座位自由观察。

  2.小组之间相互交流,然后全班交流,学生以组为单位在投影以上展示交流。

  总结学生的发言:从不同的方向观察,所看到的形状是不一样的。

  三、拓展应用

  1.做教科书例2

  2.智力游戏:两个同学为一组做游戏,一个同学画,另一个同学猜,负责猜的同学要想办法通过你提问的问题确定这个物体是什么,猜完后,在把物体拿出来验证一下,看是否猜对了。

  学生玩游戏,教师指导。

  四、总结

  本节课你学会了什么?

  五、作业布置

  兴趣探索,根据以下几幅图找出1的对面是几,2的对面是几,3的对面是几。

  1.不同角度观察一个物体,看到的面都是两个或三个相邻的面,不可能一次看到长方体或正方体相对的面。

  2.从一个面看到物体的形状,可以有多种不同的摆放方式。

  3.知道从两个面看到的物体的形状,可以确定小立方体的个数范围。

五年级下册数学教案9

  教学要求

  1、根据正方体特征,推导出正方体表面积的计算方法。

  2、学会解决实际生活中有关长方体和正方体表面积的计算问题。

  3、培养学生思维的灵活性。

  教学重点

  正方体表面积的计算方法。

  教学用具

  教师准备:一个正方体纸盒和例3的实物模型、投影仪;学生准备:一个正方体纸盒。

  教学过程

  一、创设情境

  1.看图并回答。(投影显示)

  (1)什么是长方体的表面积?

  (2)怎样计算这个长方体的表面积?

  2.看看各自准备的正方体回答问题。

  (1)什么是正方体的表面积?

  (2)正方体6个面的面积怎样?

  (3)如果给你正方体一条棱的长度,你能算出它的表面积是多少吗?

  师:好,今天这节课我们就来学习正方体表面积的计算方法以及长方体和正方体表面积的实际应用。(板书课题)

  二、实践探索

  1.小组合作学习----正方体表面积的计算。

  ①题中的棱长就是每个面的什么?

  ②你能算出这个正方体的表面积吗?

  ③小组合作,寻找计算方法。

  3×3×6或者32×6

  =9×6=9×6

  =54(*方厘米)=54(*方厘米)

  说明:上面两种做法都对,32表示2个3相乘。

  2.教学计算长方体和正方体某几个面的面积。

  在实际生产和生活中,有时还要根据实际需要计算长方体或正方体中某几个面的面积,如:投影显示例3,拿出实物模型。

  (1)帮助学生分析题意。

  ①售米的木箱是什么体?

  ②“上面没盖”就是没有哪一个面?

  ③要求的问题,实际上是算哪几个面的面积之和?

  (2)再让学生分小组讨论解答方法,只列式不计算。

  (3)学生讲所列出的算式的含义,确定正确后算出结果,集体订正。

  三、课堂实践

  做第27页的“做一做”,先让学生列出解答的算式,并讲一讲自已是怎样想的,确定正确后算出结果。

  四、课堂小结。

  学生小结今天学习的内容。

  五、课堂实践

  做练习六的第5、6、7题。

五年级下册数学教案10

  教学目标:

  1、知道容积的意义。

  2、掌握容积单位升和毫升的进率,及它们与体积单位立方分米、立方厘米之间的关系。

  3、会计算物体的容积。

  教学重点:

  1、容积的概念。

  2、容积与体积的关系。

  教学难点:

  容积与体积的关系。

  教具:量筒和量杯、不同的饮料瓶、纸杯

  教学过程:

  一、复习检查:

  说出长正方体体积计算公式。

  二、准备:

  把泥放入一个长方体的小木盒中(压实,与上口*),然后扣出来,量一量泥块的长、宽、高。计算泥块的体积。这个长方体小木盒所能容纳物体的体积是()。

  三、新授:

  1、认识容积及容积单位:

  (1)箱子、油桶、仓库等所能容纳物体的体积,叫做它们的容积。

  通过上面的“做一做”,我们知道长方体小木盒所能容纳物体的体积就是这个小木盒的容积。

  (2)计量容积,一般就用体积单位。但是计量液体体积,如药水、汽油等,常用容积单位升和毫升。

  (3)演示:体积单位与容积单位的关系。

  说一说,在生活中哪些物品上标有升或毫升。升和毫升有什么关系呢?教具演示。

  ①1升(L)=1000毫升(mL)

  将1升的水倒入1立方分米的容器里。

  小结:1升(L)=1立方分米(dm3)

  ②1升=1立方分米

  1000毫升=1000立方厘米

  1毫升(mL)=1立方厘米(cm3)

  练一练:

  1、8L=()mL3500mL=()L15000cm3=()mL=()L

  1、5dm3=()L

  (4)小组活动:

  a、将一瓶矿泉水倒在纸杯中,看看可以倒满几杯?

  b、估计一下,一纸杯水大约有多少毫升,几纸杯水大约是1升。

  2、长方体或正方体容器容积的计算方法,跟体积的计算方法相同。但是要从容器的里面量长、宽、高。

  例一个小汽车上的油箱,里面长5分米,宽4分米,高2分米。这个油箱可以装汽油多少升?

  5×4×2=40(立方分米)40立方分米=40升

  答:这个油箱可以装汽油40升。

  做一做:一个正方体油箱,从里面量棱长是1、4米。这个油箱装油有多少升?(订正)

  小结:计算容积的步骤是什么?

  3、我们知道了计算规则物体的体积的方法,如计算长方体的体积是用长乘宽乘高,计算正方体的体积是棱长的3次方。那有些不规则的物体怎么计算它的体积呢?

  出示一个西红柿,谁有办法计算它的体积?小组设计方案:

  四、巩固练习:

  1、生物小组买来一个长方体鱼缸,从里面量长是6分米,宽是4分米,深2、5分米,它的容积是多少升?

  2、一个长方体油箱的容积是20升。这个油箱的底长25厘米,宽20厘米,油箱的深是多少厘米?

  3、有一个棱长是6分米的正方体水箱,装满水后,倒入一个长方体水箱内,量得水深3分米,这个长方体水箱得底面积是多少?

  4、提高题:p55、16


《找质数》五年级数学教案3篇(扩展6)

——五年级下册数学教案10篇

五年级下册数学教案1

  【教学内容】

  质数和合数(课本第14页例1及第16页练习四1~3题)。

  【教学目标】

  1、使学生能理解质数、合数的意义,会正确判断一个数是质数还是合数。

  2、知道100以内的质数,熟悉20以内的质数。

  3、培养学生自主探索、独立思考、合作交流的能力。

  4、让学生在学习活动中体验到学习数学的乐趣,培养学习数学的兴趣。

  【教学重难点】

  重点:理解质数、合数的意义。

  难点:掌握判断质数与合数的方法。

  【教学过程】

  一、复习导入

  1、什么叫因数?

  2、自然数分几类?(奇数和偶数)

  教师:自然数还有一种新的分类方法,就是按一个数的因数个数来分,今天这节课我们就来学习这种分类方法。

  二、新课讲授

  1、学习质数、合数的概念。

  (1)写出1~20各数的因数。(学生动手完成)点四位学生上黑板板演,教师注意指导。

  (2)根据写出的因数的个数进行分类。(填写下表)

  (3)教学质数和合数的概念。

  针对表格提问:什么数只有两个因数,这两个因数一定是什么数?

  教师:只有1和它本身两个因数,那么这样的数叫做质数(或素数)。如果一个数,除了1和它本身还有别的因数,那么这样的数叫做合数。(板书)

  2、教学质数和合数的判断。

  判断下列各数中哪些是质数,哪些是合数。

  17 22 29 35 37 87 93 96

  教师引导学生应该怎样去判断一个数是质数还是合数(根据因数的个数来判断)

  质数:17 29 37

  合数:22 35 87 93 96

  3、出示课本第14页例题1。

  找出100以内的质数,做一个质数表。

  (1)提问:如何很快地制作一张100以内的质数表?

  (2)汇报:

  ①根据质数的概念逐个判断。

  ②用筛选法排除。首先排除掉2的倍数,再排除掉3 的倍数。提问:4的倍数还需不需要排除呢?(不用)接下来我们可以排除掉5、7的倍数,剩下的就是质数。

  ③注意1既不是质数,也不是合数。

  100以内质数表

  三、课堂作业

  完成教材第16页练习四的第1~3题。

  四、课堂小结

  这节课,同学们又学到了什么新的本领?

  学生畅谈所得。

  【板书设计】

  质数和合数

  一个数,如果只有1和它本身两个因数,那么这样的数叫做质数(或素数)。一个数,如果除了1和它本身还有别的因数,那么这样的数叫做合数。1既不是质数,也不是合数。

  【教学反思】

  教学质数与合数时,先复习了因数的概念,然后再让学生找出1~20各数的所有因数,并引导学生观察这些数的因数有什么不同,再进行分类,在此基础上引出了质数、合数的概念,学生对一些知识的掌握就会水到渠成,而且还会作出正确判断。

五年级下册数学教案2

  教学目标:

  1、知识技能:经历探索分数基本性质的过程,理解分数的基本性质,能运用分数的基本性质,把一个分数化成指定分母或分子而大小不变的分数。

  2、思考与问题解决:经历观察讨论,操作等学习活动,能对分数的`基本性质作出简要的,合理的说明,培养学生的观察,比较,归纳,总结概括的能力。

  3、情感态度:经历观察,操作和讨论等数学学习活动,使学生进一步体验数学学习的乐趣,鼓励学生敢于发现问题,培养学生勇于解决问题的学习品质。

  教学重点:

  探索,发现和掌握分数的基本性质,并能运用分数的基本性质解决问题。

  教学难点:

  自主探索,归纳概括分数的基本性质。

  教具学具准备:

  多媒体课件,正方形纸,彩笔。

  教学设计:

  一、创设情境,导入新课:

  1、课件分别出示两张不同的孙悟空的照片。师:学们仔细看看这两张照片,你有什么发现?(指名回答)。

  2、教师引导交流:孙悟空本人没有改变,只不过是外表的打扮装饰发生了改变。

  3、学生初步感知了什么变了而什么却没有变的概念。

  4、教师导入新课:今天我们就来探讨什么变了而什么没有变的有关内容。教师板书课题:分数的基本性质设计意图:利用学生感兴趣的图片来吸引学生的注意力和观察能力,为下一步学习营造一个轻松活跃的氛围。

  二、探究新知。

  (一):

  1、师:在我们在学习这个新的内容之前,我们首先来复习一下除法与分数的关系。学生回答教师板书:

  被除数=课件出示:120÷30=(120×2)÷(30×2)=(120÷10)÷(30÷10)=

  2、同学们说说这几道相等吗?(指名回答)。

  3、教师引导说出商不变的性质,课件出示商不变的性质的定义。

  设计意图:通过复习商不变的性质,为下一步更容易的学习分数的基本性质打下基础。

  (二)、教学新知。

  1、师:请同学们拿出课前准备好的正方形纸,把手中的纸*均折成4份,其中把3份图上你喜欢的颜色。

  2、学生操作,教师巡视并特别提醒学生注意“*均分”。

  3、展示学生的作业。

  4、师:现在请同学们把正方形纸*均分成8份,16份,分好之后你有什么发现?(指名回答)。

  5、教师归纳总结,并课件出示:设计意图:同一张纸能*均分成不同的份数,拓展学生的思维能力。

  6、引导学生观察:

  观察它们的分子和分母是怎样变,学生观察,思考,交流后,教师集体指导观察,并板书:

  教师归纳总结后,学生完成课本66页的填空题,完成后集体回答。

  设计意图:学生通过动手操作发现一些表象,但这些表象还须上升为科学理论,这就需要学生能透过表象识别表现后蕴藏的规律,这才能知其然且知其所以然,便于以后举一反三,解决同类相关问题。

  7、课件出示:(通知互相讨论)

  (1)相比较,看看分子分母有什么变化?

  (2)在这个变化中,你们发现了什么规律。

  8、教师引导学生说出:分数的分子和分母同时乘或除以相同的数(0除外)分数大小不变。这就是分数的基本性质。(教师特别强调“同时”“同一个数”)。

  9、教师提出疑问:为什么要0除外呢?学生回答,教师归纳:因为0和任何数相乘都得0,而分数的分母是不能为0的。

  10、同学们,现在你们来看看分数的基本性质和你们以前学习过得商不变性质有什么不同呢?(课件出示两性质作对比)

  师:分数的基本性质和商不变性质的规律是一致的。

  三、巩固强化,拓展应用。

  (1)课件出示:(集体回答)。

  (2)指出下列分数是否相等。(指名回答)。

  (3)把和化成分母是10而分数大小不变的分数。(指名到台上板演)。

  (4)课件出示小故事。

  有位老爷爷把一块地分给三个儿子。老大分到了这块地的,老二分到了这块地的。老三分到了这块的。老大、老二觉得自己很吃亏,于是三人就大吵起来。刚好阿凡提路过,问清争吵的原因后,哈哈的笑了起来,给他们讲了几句话,三兄弟就停止了争吵。

  你知道,阿凡提为什么会笑吗?他对三兄弟讲了哪些话?(让学生课后去思考)

  设计意图:多样的练习可以让学生及时巩固所学知识,有调动了学习的积极性。

  四、回顾总结,梳理新知。

  同学们,你们对分数又有了哪些新的了解呢?板书设计:分数的基本性质数的分子和分母同时乘或除以相同的数(0除外)分数大小不变。这就是分数的基本性质。

  教学反思:

  1、创设情境,激发学生兴趣。出示孙悟空的照片激发学生的兴趣,吸引学生的注意力。

  2、手脑并用,在操作中深入感知分数。请同学们用一张正方形纸片,动手折一折,通过三次的对折,每次找出一个和相等的分数,比较涂色部分大小有没有变化?(没有)。那么得到了什么结论?教师引导学生观察分子,分母的变化,经历总结得出:分数的分子和分母同时乘或除以相同的数(0除外)分数大小不变。学生对此进行巩固后,再引导学生说出:0除外。学生在动手实践的过程中动脑思考,很快地突破了重难点,取得很好的效果。

  3、巩固练习,围绕中心。在设计练习的过程中,采取多种形式呈现,使学生加深对分数基本性质的理解,激发了学生学习的兴趣,使每个学生都能理解所学知识,学有所获,并进一步学习约分和通分打下了良好的基础。

五年级下册数学教案3

  教学目标:

  知识与技能

  (1)知道什么是速度;速度是复合单位;会正确读写速度单位。

  (2)认识速度、时间与路程,理解他们之间的关系。

  (3)能运用所学的知识解决一些实际问题。

  过程与方法

  (1)经历从生活中感悟数学、体验问题冲突及解决问题的过程。

  (2)培养观察、比较和概括能力,促进学生数学思维的发展。

  情感态度与价值观

  体会学习数学的乐趣,提高学习数学的兴趣,建立学好数学的信心。

  教学重点:

  认识速度、时间与路程,理解他们之间的关系。

  教学难点:

  知道速度是复合单位,会正确读写速度单位。

  教学过程:

  一、导入

  师:小朋友们都跑过步吧,那你们知道我们班谁跑的最快吗?

  我们就以50米为例,请5位你认为跑得最快的小朋友,说一说你所用的时间。

  [引用学生体育活动中熟悉的50米跑为情景,使学生感悟生活中的数学,并对数学产生亲近感,进而进一步对下文的路程相同、时间相同时,速度的变化情况讨论作铺垫。]

  二、新授

  (一)路程相同时,比速度。

  师:你们认为这5位小朋友中,谁跑的最快?

  为什么?(生说理由)

  师:可见,在路程相等时,谁用的时间短,谁就跑得快。

  (二)时间相同时,比速度。

  师:一年级的小A同学看到()号运动员跑的这个成绩,他乐坏了,高兴得说,我居然和三年级的大哥哥跑的一样快。

  师:说说你的想法。(生说想法)

  师:可见,在时间相同时,谁跑的路程长,谁就跑得快。

  (三)路程和时间都不相同时,比速度。

  1、学习速度的单位

  师:刚刚我们说,路程相等时,时间越短,速度越快;时间相等时,路程越长,速度越快。那么,路程和时间都不相同时,该怎么比快慢呢?

  今天,我们就来学习:(揭题)谁跑得快

  来看看小丁丁和小胖之间的PK赛,小丁丁说“我3分钟走了180米,小胖说“我5分钟走了250米,谁跑的快?”说说你准备怎么比?(算出每分钟所行的路程)

  师:请你在1号本上完成(1学生板演、校对)。 师:再来看看摩托赛车与小汽车之间的较量。

  师:小丁丁这里是60米,摩托赛车这里也是60米,大家都是60米,是不是就是说,小丁丁和摩托赛车一样快呢?

  [相同的数据,不同的意义,提出这样的问题,旨在使学生在头脑中出现“冲突”,通过学生自己感悟,得出每个数据表示的是在单位时间内行走的路程的表达,从而引出速度的单位,并对速度的意义产生初步的感悟。]

  师:为什么?说说你的想法。(第一个60米表示的是小丁丁每分钟行60米,第二个60米是摩托赛的1秒钟行了60米)

  师:我们光从数据上看,是一样的,这样很难区分,所以这时候,我们很需要一个能正确表示速度的单位,像小丁丁这样1分钟行使60米,指的就是他的速度(板书),我们把它写作60米/分。读作、表示?而摩托赛车的速度则应该是60米/秒。读作、表示?如果我们把速度单位这样来写,我们就能很好地进行区分了。

  师:照着老师的样子,将自己本子上的单位修改一下吧。

  师:思考这道题目,现在,你能尝试着用刚刚学到的这个本领来完整地解答了吗?(一学生黑板)

  师:请你来说一说,你所计算的吉普车的速度表示的是什么意思?读作?

  2、感受生活中的速度,并理解速度的意义

  师:其实,除了我们刚才遇到的物体的速度外,在我们的生活中还有很多关于速度的信息,让我们一起到生活中去感受一下速度吧。

  (当遇到狮子的追捕时,鸵鸟甚至奔跑的还要更快;豹子奔跑的技能,其实是一种生存的技能;遇到过电闪雷鸣吗?你能说一说,是先看到闪电还是先听到雷声呢?你知道为什么吗?)

  其实生活中还有很多关于速度的信息,做一个有心人,相信你会了解更多。

  [通过感悟生活中的速度,一方面是让学生练习速度的读法和表示的意义的过程,使学生在有趣的欣赏、阅读过程中,进一步巩固知识点;其次,使学生通过这个过程了解速度在生活中是无处不在的,鼓励学生用数学的眼光看生活;另一方面,通过这样的介绍,拓宽学生知识面的过程,使学生在学习数学的同时,了解更多。其实,更重要的是帮助学生在实际情境中理解速度的意义。] 3、概括什么是速度:

  师:看来,2250米/分、340米/秒、4千米/时等等表示的都是速度,那么,你能用自己的语言概括一下,什么是速度吗?(物体在单位时间内行驶的路程。)

  4、速度与路程和时间的关系

  师:这是我们刚刚用过的6组数据(PPT呈现出之前计算过的6组数据),仔细观察,想一想,速度与路程和时间有怎样的关系?

  5、口答:

  ⑴一列火车2小时行驶180千米,这列火车的速度是XXXXX。

  ⑵自行车3分钟行驶了600米,这辆自行车的速度是XXXXX。

  ⑶一名运动员8秒跑了80米,这名运动员的速度是XXXXXX。

  [通过练习使学生能根据“速度、路程和时间”三个量之间的关系解决一些问题,培养学生解决问题的能力]

  三、拓展

  带有这个标志(标志上标有60)的路共长180千米,张叔叔驾车想花2小时开完这一路段。他会超速吗?

  [本节课是《谁跑得快》的第一课时,因而在授课时着重安排解决“速度”,将“路程”与“时间”安排在第二课时,但考虑到学生思维的需求,也预设到了学生求出“路程”或“时间”来解决此题的可能,因此,除了上面练习中集中练习了解决不同物体的速度外,在此题中,我特意编写了一些特殊的数据,旨在让不同的学生得到不同的需要。]

  四、回顾

  师:今天你有哪些收获?

五年级下册数学教案4

  教学目标:

  1、认识常用的体积单位:立方厘米、立方分米、立方米,在数学活动中建立体积是1立方厘米、1立方分米、1立方米的空间观念。

  2、自主探索得出相邻体积单位之间的进率,发展学生的空间观念,培养学生的推理能力。

  3、培养学习类比能力,从已有知识——面积单位引发思考,初步了解体积单位和面积单位之间的.联系与区别。

  4、在动手操作、观察比较、质疑反思等活动中,培养团队意识,提升合作精神与质疑能力。

  教学重点:

  初步建立体积是1立方厘米、1立方分米、1立方米的空间观念,能正确应用体积单位估算常见物体的体积。

  教学难点:

  通过探索,自主推算出相邻体积单位间的进率。

  教学准备:

  多媒体课件、体积单位模型、彩泥、魔方等。

  教学过程:

  一、创设情境,引发思考

  师:上一节课,我们认识了体积,什么是物体的体积?

  问:体积有大有小,小胖和小巧运用所学知识搭积木、比体积。哪个体积比较大?(生生交流)

  师:今天这节课就让我们一起来探究体积单位(揭示课题:体积单位)。

  二、合作学习,探究新知

  (一)探寻学生已有知识:

  问:关于体积单位你已经了解了些什么?让我们先相互交流一下!(生生交流)

  (预设:知道常用体积单位有立方厘米、立方分米、立方米,并会用字母表示)

  【设计意图:教学是从学生原有的基础和经验出发的,了解学生已知的,分析他们未知的,有针对性地设计教学,才能构建高效课堂】

  (二)建立1cm3、1dm3、1m3的空间观念

  1、建立1立方厘米的空间观念:

  (1)初步感知1cm3有多大:

  问:让我们先畅所欲言,你认为1cm3有多大?哪些物体接近1 cm3?(课件展示)

  【设计意图:“你认为1cm3有多大?”引导学生用自己的方式表达自己心中1立方厘米的大小,或用身边的物体参照、或用手势比划,或对或错,形式不一的表达方式,更激发了学生探究的热情——究竟1立方厘米有多大。】

  <<<123>>>

  (2)触类旁通,定义1 cm3的大小:

  师:我们已经知道边长为1cm的正方形,面积是1cm2,你能触类旁通定义1 cm3的大小吗?(同桌讨论)

  【设计意图:在教学中,我们应当注意对学生迁移意识的培养,也就是说要注重运用类比的思想。】

  (3)进一步感知1cm3的大小:

  做一做:请大家四人为一小组,用彩泥捏出一些体积是1立方厘米的正方体。拼一拼,2立方厘米、5立方厘米、10立方厘米分别有多大。

  (4)想一想,填一填:

  师:我们知道计量一个物体的体积,就是看它含有多少个体积单位。下列长方体或正方体是用几个1立方厘米的正方体积木搭出的?体积是多少?(课件展示)

  2、建立1立方分米、1立方米的空间观念:

  (1)举一反三:从1 cm3定义1 dm3、1 m3的大小。(生生交流)

  【设计意图:在类比的基础上尝试举一反三,不仅使数学知识容易理解,而且对概念的记忆有水到渠成之感,自然、简洁,从而激发起学生的创造力。】

  (2)想象一下:1 dm3、1 m3有多大?哪些物体接近1 dm3、1 m3?(学生举例,课件、教具辅助)

  【设计意图:学会定义1dm3和1m3,不等同于就能正确感悟它们实际的空间大小,教师事先准备了3阶魔方、4阶魔方和1个标准1dm3的模型,让学生选择哪一个立方体更接近1dm3,学生通过观察、猜测、验证,从而获得对知识的真正意义。】

  (3)学生活动:4个同学为一组,手拉手,围出一个大约1m3的空间。

  【设计意图:用3根1m长的木条做成一个互成直角的架子,放在墙角,想象一下1m3的空间有多大。这样的想象也能提升学生对1立方米的空间观念,但是如果能创造一个有趣的学生活动,让学生们在实践活动中体验1立方米的大小,不仅提升了团队协作能力,而且在做中学,更能有效帮助学生建立体积是1立方米的空间大小。】

  3、练习(用合适的体积单位表示下面物体):

  一块橡皮的体积约是8( )。

  一台录音机的体积约是10( )。

  运货集装箱的体积约是40( )。

  一本新华字典的体积约是0.4( )。

  一个西瓜的体积约是5( )。

  一间教室的体积约是180( )。

  (三)继续类比,探究相邻体积单位间的进率:

  1、师:学好知识要能触类旁通,今天我们从已知知识cm2、dm2、m2出发,探索了cm3、dm3、m3这一新知识,同时我们也要关注它们的区别,它们有哪些区别呢?(同桌交换意见)

  2、追问:cm2、dm2、m2每相邻两个面积单位间的进率是100,猜想一下cm3、dm3、m3相邻体积单位间的进率又是多少呢?(学生猜想)

  【设计意图:安排“猜想”有两层含义,一是进一步引导学生关注到面积单位与体积单位间的区别,更重要的是为了让学生掌握知识、提升能力,我们必须带领学生“再创造”,虽然知识是前人证明和研究出来的,但我们更应该让学生也像数学家们一样学会自己发现,“没有大胆的猜想就做不出伟大的发现”(牛顿)。】

  3、验证:你们有什么好方法证明1cm3和1dm3间的关系呢?(课件辅助演示1个——10个——100个——1000个的过程)

  【设计意图:在小学数学教学中,我们应当重视“猜想—验证”这一重要思想方法的渗透与培养,使学生在猜想验证中获得探究的乐趣。】

  4、运用:同桌合作,请说一说1dm3和1m3间的关系。(课件演示)

  5、拓展:通过探究,我们知道每相邻两个体积单位之间的进率是1000,你们还有什么疑问吗?(预设:你能试着说一说1cm3和1m3之间的关系吗?)

  【设计意图:学生自己提出探索1cm3和1m3之间的关系,进一步激发学生探究的热情。同时也继续渗透类比的思想方法,或用100×100×100,或用1000×1000,鼓励学生能多角度思考与验证,收获成功的喜悦。】

  三、动手操作,质疑反思:(机动,也可作为课后拓展)

  学生活动:用一些棱长为1厘米的小正方体,做下面的活动。

  1、用4个小正方体可以摆成一个大正方体吗?

  2、最少要用多少个小正方体才可以摆成一个大正方体?

  3、你能再摆一个大一些的正方体吗?用了多少个小正方体?

  【设计意图:以“猜想—验证”为核心,引导学生多角度探索问题,发现规律,并打通与体积单位进率之间的关系。】

  四、总结全课,感悟学习方法:

  师:通过今天的学习,你有哪些新的收获?(生生互动)

  小结:今天我们从已知知识cm2、dm2、m2出发,探索了cm3、dm3、m3这一新知识,学习就要学会触类旁通、举一反三。

五年级下册数学教案5

  教学内容:观察物体

  教学目标:

  1.让学生经历观察的过程,认识到从不同的位置观察物体,所看到的形状是不同的。能辨认从正面、左面、上面观察到的简单物体的形状。

  2.培养学生从不同角度观察,分析事物的能力。

  3.培养学生构建简单的空间想象力。

  重点:帮助学生构建初步的空间想象力。

  难点:帮助学生构建初步的空间想象力。

  教学过程:

  一、谜语导入

  请同学们猜谜语:“左一片、右一片,摸得着,看不见,是什么呢?”(耳朵)为什么能看见别人的耳朵,却看不见自己的耳朵呢?因为我们观察的角度不一样,那么今天我们就一起来进一步研究观察物体(板书)

  二、合作探究

  (一)整体观察

  1.教师将一个对面涂有相同颜色的长方体举起静止不动,叫学生观察并提问:

  你观察到的正方体是什么样的?

  在你的位置上观察,你看到了哪几个面?

  2.学生汇报交流。

  学生自由走动,观察。汇报交流。

  3.解释应用

  教师出示两个正方体的立体图,一个有虚线,另一个没有。

  提问:谁能用刚学到的知识解释一下正方体为什么这样画?

  学生解释说明。

  (二)分别从三个面进行观察(出示例1)

  1.教师提问:我们分别从几个不同的方向去观察这个图形,看看它的正面、左面以及上面分别是什么形状的图形,把它们分别划出来。

  学生离开座位自由观察。

  2.小组之间相互交流,然后全班交流,学生以组为单位在投影以上展示交流。

  总结学生的发言:从不同的方向观察,所看到的形状是不一样的。

  三、拓展应用

  1.做教科书例2

  2.智力游戏:两个同学为一组做游戏,一个同学画,另一个同学猜,负责猜的同学要想办法通过你提问的问题确定这个物体是什么,猜完后,在把物体拿出来验证一下,看是否猜对了。

  学生玩游戏,教师指导。

  四、总结

  本节课你学会了什么?

  五、作业布置

  兴趣探索,根据以下几幅图找出1的对面是几,2的对面是几,3的对面是几。

  1.不同角度观察一个物体,看到的面都是两个或三个相邻的面,不可能一次看到长方体或正方体相对的面。

  2.从一个面看到物体的形状,可以有多种不同的摆放方式。

  3.知道从两个面看到的物体的形状,可以确定小立方体的个数范围。

五年级下册数学教案6

  教学目标:

  使学生掌握分数与除法之间的关系,并能进行简单的应用;培养学生动手操作的能力和抽象,概括,归纳的能力。

  教学重点:

  分数的数感培养,以及与除法的联系。

  教学难点:

  抽象思维的培养.

  教学过程:

  一,铺垫复习,导入新知[课件1]

  1,提问:A,7/8是什么数它表示什么

  B,7÷8是什么运算它又表示什么

  C,你发现7/8和7÷8之间有联系吗

  2,揭示课题。

  述:它们之间究竟有怎样的关系呢这节课我们就来研究"分数与除法的关系".

  板书课题:分数与除法的关系

  二,探索新知,发展智能

  1,教学P90.例2:把1米长的钢管*均截成3段,每段长多少

  提问:A,试一试,你有办法解决这个问题吗

  板书:用除法计算:1÷3=0.333……(米)

  用分数表示:根据分数的意义,把1米*均分成3份,每份是1米的1/3,就是1/3米。

  B,这两种解法有什么联系吗

  (从上面的解法中可以看出,它们表示的是同一段钢管的长度,所以1÷3和1/3是相等的关系.)

  板书:1÷3=1/3

  C,从这个等式中,我们发现:当1÷3所得的商除不尽时,可以用什么数来表示也就是说整数除法的商也可以用谁来表示

  2,教学P90.例3:把3块饼*均分给4个孩子,每个孩子分得多少块[课件3]

  (1)分析:A,想想:若是把1块饼*均分给4个孩子,每个孩子分得多少怎么列式

  B,同理,把3块饼*均分给4个孩子,每个孩子分得多少怎么列式3÷4的商能不能用分数来表示呢

  板书:3÷4=3/4

  (2)操作检验(分组进行)

  ①把3个同样大小的圆看作3块饼,分一分,看每个孩子究竟能分得多少块饼

  ②反馈分法.

  提问:A,请介绍一下你们是怎么分的

  (第一种分法:把3块饼一块一块地分,每个孩子分得每个饼的1/4,共得3个1/4块,也就是3/4块.)

  (第二种分法:把三块饼叠在一起分,每个孩子分得3块饼1/4的,拼起来相当于一块饼的3/4,也就是3/4块.)

  B,比较这两种分法,哪种简便些

  ※把5块饼*均分给8个孩子,每个孩子分得多少说一说自己的分法和想法.

  3,小结提问:A,观察上面的学习,你获得了哪些知识

  板书:被除数÷除数=除数/被除数

  B,你能举几个用分数表示整数除法的商的例子吗

  C,能不能用一个含有字母算式来表示所有的例子

  板书:a÷b=b/a(b≠0)

  D,b为什么不能等于0

  4,看书P91深化.

  反馈:说一说分数和除法之间和什么联系又有什么区别

  板书:分数是一个数,除法是一种运算。

  三,巩固练习[课件5]

  1,用分数表示下面各式的商。

  5÷824÷2516÷497÷139÷9c÷d

  2,口算.

  7÷13=()÷9=1/2=()÷()8/13=()÷()

  3,7/10表示把单位"1"*均分成()份,表示这样的()份的数.1÷21表示两个数(),还可以表示把()*均分成()份,表示这样的一份的数。

  四,全课小结

  当两个自然数相除不能整除时,它门的商可以用分数表示,由于除法是一种运算,而分数是一种数,因此,我们只能说被除数相当于分数的分子,除数相当于分数的分母.故此,分数与除法既有联系,又有区别。

  在整数除法中零不能作除数,那么,分数的分母也不能是零。

  五,家作

  P93.1,2,3

  板书设计:分数与除法的关系

  例2:1÷3=0.333……(米)=1/3(米)例3:3÷4=3/4

  被除数÷除数=除数/被除数

  a÷b=b/a(b≠0)

  分数是一个数,除法是一种运算

五年级下册数学教案7

  教学内容:

  人教版小学五年级数学质数和合数

  教学目标:

  1、理解质数和合数的概念,并能判断一个数是质数还是合数,,会把自然数按因数的个数进行分类。

  2、培养学生细心观察全面概括。准确判断。自主探索、独立思考、合作交流的能力。

  教学重点:

  能准确判断一个数是质数还是合数。

  教学难点:

  找出100以内的质数。

  教学过程:

  一、复习导入(加深前面知识的理解,为新知作铺垫)

  下面各数谁是谁的因数,谁是谁的倍数,谁是偶数,谁是奇数。

  3和154和2449和791和13

  指名回答。

  二、小组合作学习质数和合数的的概念。

  全班分两组探讨并写出1~20各数的因数。

  1、观察各数因数的个数的特点。

  2、板前填写师出示的表格。

  只有一个因数

  只有1和它本身两个因数

  除了1和它本身还有别的因数

  3、师概括:只有1和它本身两个因数,这样的的数叫做质数。除了1和它本身还有别的因数,这们的数叫做合数。(板书:质数和合数)

  4、举例。

  你能举一些质数的例子吗?

  你能举一些合数的例子吗?

  练习:最小的质数是谁?最小的合数是谁?质数有多少个因数?合数至少有多少个因数?

  5、探究“1”是质数还是合数。

  刚才我们说了还有一类就是只有一个因数的。想一想:只有一个因数的数除了1还有其它的数吗?(没有了,)1是质数吗?为什么?是合数吗?为什么?(不是,因为它既不符合质数的特点,也不符合合数的特点。)

  引导学生明确:1既不是质数也不是合数。

  练习:自然数中除了质数就是合数吗?

  三、给自然数分类。

  1、想一想

  师:按照是不是2的倍数把自然数分为奇数和偶数。按照因数个数的多少,把非零自然数分为哪几类?

  生:质数,合数,1。

  2、说一说。

  既然知道了什么是质数,什么是合数,那么判断一个数是质数还是合数,关键是看什么?

  引导学生明确:关键看因数的个数,一个数如果只有1和它本身两个因数,这个数就是质数,如果有两个以上因数,这个数就是合数。

  四、师生学习教材24页的例1。

  老师:除了用找因数的方法判断一个数是质数还是合数,还可以用查质数表的方法。

  1、师引导学生找出30以内的质数。

  提问:这些数里有质数、合数和1,现在要保留30以内的质数,其他的数应该怎么办?(先划去1,)再划去什么?(再划去2以外的偶数)最后划去什么?(最后划去3、5的倍数,但3、5本身不划去)剩下的都是什么数?(剩下的就是30以内的质数。)

  (特殊记忆20以内的质数,因为它常用。)

  2、小组探究100以内的质数。

  3、汇报100以内的质数。师生共同整理100以内的质数表。

  4、应用100以内质数表:

  练习:

  (1)有的奇数都是质数吗?

  (2)所有的偶数都是合数吗?

  五、思维训练。

  有两个质数,它们的和是小于100的奇数,并且是17的倍数。求这两个数。

  六、课堂小结。

  这节课你学会了什么?(质数和合数)什么叫质数?(一个数只有1和它本身两个因数,这样的数叫做质数)什么叫合数?(一个数除了1和它本身外还有别的因数的,这样的数叫做合数。)你会判断质数和合数吗?判断的关键是什么?(看这个数因数的个数。)

  反思:

  在设计质数与合数这一节课时,我用“细心观察、全面概括、准确判断”这一主线贯穿全课。并在每个新知的后面都设计了一个小练习。以便及时巩固和加深对新知的理解和记忆。最后的思维训练,是给本节课学得很好的学生一个思维的提升。小结又针对全班学生做了新知的概括。

  在学生找20以内各数的因数时,我应该注重探索,体现自主。就是放手让学生自己想办法以最短的时间找出各数因数,并在我的引导下按因数的个数给各数分类,最终得出质数和合数的概念。在以后的学习中我应当多多提倡自主探索性学习,注重“学习过程”,而不是急于看到结果。让学生成为自主自动的思想家,在学习新知识时根据已积累的知识经验有所选择、判断、解释、运用,从而有所发现、有所创造。

五年级下册数学教案8

  教学内容

  质数和合数(课本第14页例1及第16页练习四1~3题)。

  教学目标

  1、使学生能理解质数、合数的意义,会正确判断一个数是质数还是合数。

  2、知道100以内的质数,熟悉20以内的质数。

  3、培养学生自主探索、独立思考、合作交流的能力。

  4、让学生在学习活动中体验到学习数学的乐趣,培养学习数学的兴趣。

  教学重难点

  重点:理解质数、合数的意义。

  难点:掌握判断质数与合数的方法。

  教学过程

  一、复习导入

  1、什么叫因数?

  2、自然数分几类?(奇数和偶数)

  教师:自然数还有一种新的分类方法,就是按一个数的因数个数来分,今天这节课我们就来学习这种分类方法。

  二、新课讲授

  1、学习质数、合数的概念。

  (1)写出1~20各数的因数。(学生动手完成)点四位学生上黑板板演,教师注意指导。

  (2)根据写出的因数的个数进行分类。(填写下表)

  (3)教学质数和合数的概念。

  针对表格提问:什么数只有两个因数,这两个因数一定是什么数?

  教师:只有1和它本身两个因数,那么这样的数叫做质数(或素数)。如果一个数,除了1和它本身还有别的因数,那么这样的数叫做合数。(板书)

  2、教学质数和合数的判断。

  判断下列各数中哪些是质数,哪些是合数。

  17 22 29 35 37 87 93 96

  教师引导学生应该怎样去判断一个数是质数还是合数(根据因数的个数来判断)

  质数:17 29 37

  合数:22 35 87 93 96

  3、出示课本第14页例题1。

  找出100以内的质数,做一个质数表。

  (1)提问:如何很快地制作一张100以内的质数表?

  (2)汇报:

  ①根据质数的概念逐个判断。

  ②用筛选法排除。首先排除掉2的倍数,再排除掉3的倍数。提问:4的倍数还需不需要排除呢?(不用)接下来我们可以排除掉5、7的倍数,剩下的就是质数。

  ③注意1既不是质数,也不是合数。

  100以内质数表

  三、课堂作业

  完成教材第16页练习四的第1~3题。

  四、课堂小结

  这节课,同学们又学到了什么新的本领?

  学生畅谈所得。

  板书设计

  质数和合数

  一个数,如果只有1和它本身两个因数,那么这样的数叫做质数(或素数)。一个数,如果除了1和它本身还有别的因数,那么这样的数叫做合数。1既不是质数,也不是合数。

  教学反思

  教学质数与合数时,先复习了因数的概念,然后再让学生找出1~20各数的所有因数,并引导学生观察这些数的因数有什么不同,再进行分类,在此基础上引出了质数、合数的概念,学生对一些知识的掌握就会水到渠成,而且还会作出正确判断。

五年级下册数学教案9

  教学目标:

  1、结合具体的情景,自主探索两位数乘两位数的乘法算法。

  2。学会进行两位数乘两位数的乘法计算,并能解决一些简单的实际问题。

  教学重点:

  1、两位数乘两位数的估算。

  2、探索并掌握两位数乘两位数(不进位)的乘法计算。

  教学难点:

  掌握两位数乘两位数(不进位)的乘法并能熟练计算。

  教学理念:

  组织学生讨论、交流,使学生体验学习中通过合作交流带来的方便和快乐。

  教学准备:

  课件。

  学生准备:

  预习课前知识。

  教学过程:

  一、实践调查

  课前让学生在汇景新城作实地调查,调查本小区住户情况

  二、课内交流

  1、让同学们根据调查所得的`数学信息编一道数学应用题。

  2、根据所编的题目独立列式

  3、探讨和交流如何解决问题。

  (1)尝试通过估算结果解决问题。

  A、分组讨论不同的计算过程

  B、师:根据以上的结果你能判断“这栋楼能住150户吗?”

  (2)讨论算法

  三、习题巩固:

  1、试一试

  11×4324×1244×21

  2、练一练:

  第1、2题

  3、第3题,学生独立思考,理解题意,再进行计算

  四、综合应用:

  陈老师班上有42名同学,她为同学们购置书包和文具,一个书包24元,一个文具11元,买书包和文具各花了多少钱?一共花了多少钱?

  五、课堂总结:今天我们学习了什么知识?你学会了什么?

  六、板书设计:

五年级下册数学教案10

  教学内容:

  教材第xx页的内容及第xx页练习的第x题。

  教学目标:

  1.理解两个数的公倍数和最小公倍数的意义。

  2.通过解决实际问题,初步了解两个数的公倍数和最小公倍数在现实生活中的应用。

  3.培养学生抽象、概括的能力。

  教学重点:

  理解两个数的公倍数和最小公倍数的意义。

  教学难点:

  自主探索并总结找最小公倍数的方法。

  教学具准备:

  多媒体课件,学生操作用长方形纸片(长3Cm,宽2Cm)与方格纸。

  学方法:

  小组合作谈话法。

  教学过程:

  一、创设情景,生成问题:

  前面,我们通过研究两个数的因数,掌握了公因数和最大公因数的知识。今天,我们来研究两个数的倍数。

  二、探索交流,解决问题

  1.在数轴上标出4、6的倍数所在的点

  拿出老师课前发的画有两条直线的纸。

  在第一条直线上找出4的倍数所在的点,画上黑点。在第二条直线上找出6的倍数所在的点,圈上小圆圈。

  2.引入公倍数

  (1)学生汇报,多媒体课件出现两条数轴,并根据学生报的数,仿效出现黑点和小圆圈。

  (2)观察:从4和6的倍数中你发现了什么?

  (3)学生回答后,多媒体课件演示两条数轴合并在一起,闪现12和21。

  (4)我们发现:有些数既是4的倍数,又是6的倍数,如果让你给这些数起个名,把它们叫做4和6的什么数呢?(板书:公倍数)

  说说看,什么叫两个数的公倍数?

  3.用集合图表示

  如果让你把4的倍数、6的倍数、4和6的公倍数填在下面的图中,你会填吗?试试看。同桌两人可以讨论一下。

  4.引人最小公倍数

  学生汇报后问:

  (1)为什么三个部分里都要添上省略号?

  (2)4和6的公倍数还有哪些?有没有最大公倍数?

  (3)有没有最小公倍数?4和6的最小公倍数是几?(板书:最小公倍数)

  4的倍数6的倍数

  4,8,

  16,20,…

  12,24,

  4和6的公倍数:

  前面学习公因数和最大公因数时,我们研究了用正方形地砖铺地的实际问题。今天,我们再来研究一个用长方形墙砖铺成正方形的实际问题出示例1。

  (1)操作探究。

  学生任意选择操作方式。

  ①用长方形学具拼正方形。

  ②在印有格子的纸上面画出用长方形墙砖拼成的正方形。边操作、边思考:拼成的正方形边长是多少?与长方形墙砖的长和宽有什么关系?

  (2)反馈并揭示意义。

  ①请选用第一种操作方式的学生上来演示拼的过程,并说一说拼出的正方形边长是多少。老师根据学生的演示板书正方形边长,如6dm

  ②请选第二种操作方式的学生汇报,老师让多媒体课件闪现边长为6dm、12dm……的正方形。

  ③正方形边长还有可能是几?你是怎样知道的?

  ④观察所拼成的边长是6dm、12dm、18dm…的正方形与墙砖的长3dm、宽2dm的关系。体会正方形的边长正好是3和2的公倍数,而6是这两个数的最小公倍数。思考:两个数的公倍数与最小公倍数之间有什么关系?(最小公倍乘2乘3…就是这两个数的其他公倍数。)

  ⑤阅读教材第xxx页的内容,进一步体会公倍数和最小公倍数的实际意义。

  三、巩固应用,内化提高

  (1)画一画,说一说。

  小松鼠一次能跳2格,小猴一次能跳3格,它们从同一点往前跳,跳到第几格时第一次跳到同一点,第2次跳到同一点是在第几格?第3次呢?

  引导学生将本题与例1比较:内容不同,但数学意义相同,都是求2和3的公倍数和最小公倍数。

  (2)完成教材第89页的“做一做”。

  学生独立思考,写出答案并交流:4人一组正好分完,说明总人数是4的倍数;6人一组正好分完,说明总人数是6的倍数。总人数在40以内,所以是求40以内4和6的公倍数。

  (3)独立完成教材第91页练习十七的第2题。

  (4)完成教材第91页练习十七的第1题。

  指导学生找到写出两个数的公倍数的简便方法,先找出两个数的最小公倍数,再用最小公倍数乘2、乘3.得到其他公倍数。

  四、回顾整理、反思提升

  通过今天的学习,你有什么收获?

  本节课我们共同研究了公倍数和最小公倍数的意义,并通过解决铺长方形地砖的问题,了解了两个数的公倍数和最小公倍数在生活中的应用。

  板书设计:

  最小公倍数:

  4的倍数:4、8、12、16、20、24、28、36……

  6的倍数:6、12、18、24、30、36……

  4和6的公倍数:12、24、36……

  4和6的最小公倍数:12

  教后反思:

  优点:

  本节课主要学习怎样进行约分,在学习中让学生自己总结方法,找到约分的技巧,并找到适合自己的方法,总结出约分时的注意事项。本节课教学内容充实,教学目标达成度高。

  不足:

  首先在分层练习的时候题目较简单,没有体现由易到难,分层练习这个过程。其次本节课从整体上来说更像一节纯粹的做练习课,缺乏必要的讲解和语言文字的修饰,更只是简单的习题罗列。


《找质数》五年级数学教案3篇(扩展7)

——五年级数学《容积》教案10篇

五年级数学《容积》教案1

  一、说教材

  《体积与容积》是北师大版五年级下册第41-42页的内容,是在学生已经认识了长方体和正方体的特点的基础上,学习了长方体和正方体的表面积计算之后的教学内容,《体积与容积》是学生进一步学习体积的计算方法等知识的基础,也是发展学生空间观念的重要载体。

  二、说教法:在教学中,我积极引导学生通过观察、操作,让学生手、眼、脑、口并用,调动多种感官参与学习,丰富学生的感性认识。建立有关体积和容积的正确表象,从而切实掌握所学的知识,为以后的进一步学习作好铺垫。

  三、说学法:

  学生自主探索、发现,小组交流

  四、说教学目标:

  1.知识与技能

  通过具体的实验活动,了解体积和容积的实际意义,初步理解体积和容积的概念。

  2过程与方法.

  在操作、交流中,感受物体体积的大小、发展空间观念。

  3.情感、态度与价值观

  增强学生的合作精神和喜爱数学的情感。

  五、说教学重点、难点

  重点:初步理解体积和容积的`概念,以及它们的联系和区别。

  难点:建立体积和容积的表象。

  突破方法:通过演示,引导学生观察,使体积和容积的意义变得直观,容易理解。通过直观的比较使学生理解体积与容积的区别与联系。

  六、说教具

  两个量杯、两个大小不同的水杯、形状不同的石块、小正方体、水。有关课件、茶叶罐,可乐瓶等容器。

  七、说教学过程

  (一)质疑导入

  出示课件乌鸦喝水动画视频。

  师:看完了动画片,谁能说说乌鸦为什么能喝到水呢?水面为什么会上涨呢?是不是原来的水增加了?

  根据学生的回答引导学生概括出:小石子占了一定的空间。

  (二)探究新知

  1、初步感知,物体所占空间有大小。

  师: 我们周围所有的物体都占有一定的空间,只不过有的占的空间大,有的占的空间小。例如,课桌占的空间大,墨水瓶占得空间小;我占的空间大,粉笔头占的空间小;教室占的空间大,黑板擦占的空间小。你能这样的对比着举几个例子说一说吗?(同桌互说)

  (设计意图:让学生利用已有的生活经验,初步感知物体的大小,为下面的探索活动做好铺垫。)

  2、提出问题,讨论解决方法。

  出示两块形状不同的石块,(一块扁状,一块球形的)谁占的空间大呢?,(1)学生观察并独立思考。

  (2)指名说说看法。

  师:看来,只凭观察我们无法判断谁占的空间大,谁占的空间小了。那你能不能想想办法,看看究竟谁占的空间大呢?

  (设计意图:提出问题,让学生寻找解决问题的办法,把学习的主动权交还给学生,不仅增强了学生探索的兴趣,而且还培养了学生解决问题的策略意识和能力。)

  3、观察实验,感知体积的意义。

  演示:将两块石头放入两个装有同样多水的杯子里。

  师:说说你有什么发现?

  生口答后,师追问:

  师:水面为什么会升高呢?上升的高度一样吗?说明了什么问题?

  学生自由发表意见

  引导生理解:两块石块在量杯中都会占一定的空间。所占的空间大,水面上升的就高;所占空间小,水面上升的就少。

  从而揭示课题:物体所占空间的大小,叫作物体的体积。(同时出示课件)

  现在你能用“体积”这个词来分别说说课桌、墨水瓶、教室和黑板擦吗?如:课桌墨水瓶比,课桌的体积大,墨水瓶的体积小。。。。。。

  (设计意图:在活动中,学生深刻地感受到物体占有一定的空间,而且所占有空间的大小不同。学生经历了实验、观察、交流等探究过程,感知了体积的实际含义。)

  4、认识容积。

  师:今天老师带来了这么多的物品,都可以用来装东西。如:可乐瓶,茶叶罐,水杯,胶水瓶,

  像量杯、纸箱、可乐瓶,茶叶罐这样能装其它东西的物体叫容器。你还知道哪些容器?哪些容器装的东西多,哪些容器装的东西少?(学生例举生活中的容器。)

  出示两个大小不同的装满水的水杯,问:哪个水杯装的水多?

  引导学生认识:两个杯子所能容纳物体的大小是不同的。

  揭示:容器所容纳物体的体积,叫作这个容器的容积。

  师:杯子里装满水,水的体积就是这个杯子的容积,茶叶罐装满茶叶,茶叶的体积就是这罐子的容积。

  5、区别体积和容积。

  出示:用来装小正方体的塑料盒和正方体教具。

  师:谁能指出这两个物体的体积和容积呢?

  交流中使学生明白:这两物体体积相同,但正方体教具没有容积。只有能够装东西的物体,才具有容积。引导学生发现:一般情况下,物体的容积比体积小。

  。

  出示课件:体积与容积的区别

  (设计意图:通过比较让学生感知“容积”和“体积”的联系和区别,理解知识间的内在联系,形成比较完整的认知结构。)

  (三)解决问题,巩固应用

  1、试一试(P42)

  出示两个相同小正方体让学生比较大小,然后用4个相同的小正方体,摆出形状不同的物体,让学生判断它们体积的大小。

  师:通过观察,你们发现什么规律?

  引导学生得出结论:体积的大小与物体所占空间的大小有关,与物体的形状无关。(同时出示课件)

  2、课件出示:(第42页“练一练”的第4题)

  (1)搭出两个物体,使它们的体积相同。

  (2)搭出两个物体,使其中一个物体的体积是另一个的2倍。

  (学生先独立按要求操作,然后同桌交流,最后全班交流。学生搭出的图形可能会不一样,这是教师可以引导学生发现体积相等,形状可能不一样,这样可以为下一题的练习打下基础。)

  3、说一说。(第42页“练一练”的第1、2题)

  (课件出示插图,让学生独立思考,再指名回答,说出理由。)

  4、想一想。(第42页“练一练”的第3题)

  (设计意图:练习的设计体现了层次性、科学性和趣味性。学生利用所学知识解释生活中的问题,是所学知识的拓展和延伸。)

  (四)评价体验

  今天这节课我们学习了什么内容?你有什么收获?对体积和容积的知识,你还想知道什么?你对自己这节课的表现满意吗?

五年级数学《容积》教案2

  教学内容:

  容积

  教学目标:

  1、知道容积的意义。

  2、掌握容积单位升和毫升的进率,及它们与体积单位立方分米、立方厘米之间的关系。

  3、会计算物体的容积。

  教学重点:

  1、容积的概念。

  2、容积与体积的关系。

  教学难点:

  容积与体积的关系。

  教具:量筒和量杯、不同的饮料瓶、纸杯

  教学过程:

  一、复习检查:

  说出长正方体体积计算公式。

  二、准备:

  把泥放入一个长方体的小木盒中(压实,与上口*),然后扣出来,量一量泥块的长、宽、高。计算泥块的体积。这个长方体小木盒所能容纳物体的体积是x。

  三、新授:

  1、认识容积及容积单位:

  (1)箱子、油桶、仓库等所能容纳物体的体积,叫做它们的容积。

  通过上面的“做一做”,我们知道长方体小木盒所能容纳物体的体积就是这个小木盒的容积。

  (2)计量容积,一般就用体积单位。但是计量液体体积,如药水、汽油等,常用容积单位升和毫升。

  (3)演示:体积单位与容积单位的关系。

  说一说,在生活中哪些物品上标有升或毫升。升和毫升有什么关系呢?教具演示。

  ①1升(L)=1000毫升(mL)

  将1升的水倒入1立方分米的容器里。

  小结:1升(L)=1立方分米(dm3)

  ②1升=1立方分米

  1000毫升1000立方厘米

  1毫升(mL)=1立方厘米(cm3)

  练一练:

  1.8L=()mL3500mL=()L15000cm3=()mL=()L

  1.5dm3=()L

  (4)小组活动:(1)将一瓶矿泉水倒在纸杯中,看看可以倒满几杯?

  (2)估计一下,一纸杯水大约有多少毫升,几纸杯水大约是1升。

  2、长方体或正方体容器容积的计算方法,跟体积的计算方法相同。但是要从容器的里面量长、宽、高。

  例一个小汽车上的油箱,里面长5分米,宽4分米,高2分米。这个油箱可以装汽油多少升?

  5×4×2=40(立方分米)40立方分米=40升

  答:这个油箱可以装汽油40升。

  做一做:一个正方体油箱,从里面量棱长是1.4米。这个油箱装油有多少升?(订正)

  小结:计算容积的步骤是什么?

  3、我们知道了计算规则物体的体积的方法,如计算长方体的体积是用长乘宽乘高,计算正方体的体积是棱长的3次方。那有些不规则的物体怎么计算它的体积呢?

  出示一个西红柿,谁有办法计算它的体积?小组设计方案:

  四、巩固练习:

  1、生物小组买来一个长方体鱼缸,从里面量长是6分米,宽是4分米,深2.5分米,它的容积是多少升?

  2、一个长方体油箱的容积是20升。这个油箱的底长25厘米,宽20厘米,油箱的深是多少厘米?

  3、有一个棱长是6分米的正方体水箱,装满水后,倒入一个长方体水箱内,量得水深3分米,这个长方体水箱得底面积是多少?

  4、提高题:p55、16

  五、作业:(略)

五年级数学《容积》教案3

  教学目标

  通过练习,进一步巩固长方体、正方体的体积计算方法,进一步体会体积和容积的意义。

  在观察中操作活动中,发展动手能力和空间观念。

  教学重点

  熟练掌握体积计算方法。

  教学难点

  理解体积和容积的意义。

  教具准备

  教师指导与教学过程

  学生学习活动过程

  设计意图

  一、揭示课题

  师板书课题

  二、进行练习

  1、求图形的体积

  请学生看书上的图然后回答:如何计算长方体和正方体的体积。

  2、用体积单位的进率单位换算知识未判断。

  3、填上适当的体积单位

  一块橡皮约10

  一本词典约900

  一个文具盒约0.35

  一个用品约0.6

  学生打开书,观察第1题的两个长方体和1个正方体的长、宽、高分别是多少?

  指否回答否,再让学生计算

  学生先找一找,再让学生交流思考的方法。

  根据自己的判断填上适当的单位。

  学生先说一说计算方法,

  然后进行计算。

  集体订正

  学生仔细观察图,理解题意后,独立完成。

  然后进行全班交流。

  通过让学生独立计算,巩固长方体和正方体的计算方法。

  让学生根据自己的判断填上适当的单位,进一步感受体积单位的实际意义,发展学生的空间观念。

  教师指导与教学过程

  学生学习活动过程

  设计意图

  4、解决实际问题

  引导学生说一说表面积和体积的不同计算方法。

  5、让学生理解两个图形所占的空间就是两个图形的体积;

  三、布置作业

  让学生独立在课堂本上完成第2、6、8、9、10题。

  可以结合实物,指一指。

  第一个图形:4×3×1=12cm;

  第二个图形的体积的策略可以多样化,可以移下面两个侧面,从而转化为一个长方体。

  通过让学生说说计算方法,体会虽然结要相同,但表面积和体积是两个不同的概念。

  发展学生的空间观念。

  板书设计:略

五年级数学《容积》教案4

  教学目标

  1.使学生知道容积的含义。

  2.认识常用的容积单位,了解容积单位和体积单位的关系。

  教学重点

  建立容积和容积单位观念,知道容积单位和体积单位的关系。

  教学难点

  理解容积的含义和升、毫升的实际大小。

  教学步骤

  一.铺垫孕伏

  1.什么是体积?

  2.常用的体积单位有哪些?它们之间的进率是多少?

  3.这个长方体的体积是多少?是怎样计算的?

  二.探究新知

  我们已经学习了体积和体积单位,今天我们继续学习一个新的知识:容积和容积单位。(板书课题)

  (一)建立容积概念。

  1.学生动手实验(每四人一组,每组一个有厚度的长方体盒,细沙一堆)

  实验题目:计算出长方体盒的体积。

  把长方体盒装满细沙,计算细沙的体积。

  2.学生汇报结果。

  长方体盒的体积:先从外面量出长方体盒的长、宽、高,再计算其体积。

  细沙的体积:细沙的体积就是长方体的体积,但要从长方体里面量长、宽、高,再计算其体积。

  教师追问:计算细沙的体积为什么要从长方体里面量长、宽、高?

  3.师生共同小结。

  教师指出:这个长方体盒所容纳细沙的体积,就是长方体盒的容积。我们看见过汽车上的油箱,油箱里装满汽油。这就是油箱的容积.长方体鱼缸里盛满水,它就是鱼缸的容积。

  师生归纳:容器所能容纳的物体的体积,就是它们的容积。(板书)

  4.比较物体体积和容积的相同和不同。

  相同点:体积和容积都是物体的体积,计算方法一样。

  不同点:体积要从容器外量长、宽、高;容积要从里面量长、宽、高。

  所有的物体都有体积;但只有里面是空的能够装东西的物体,才能计量它的容积。(出示长方体木块)

  (二)认识容积单位。

  1.教师指出:计量容积,一般就用体积单位。但是计量液体的体积,如药水,汽油等,常用容积单位升和毫升。(板书:升毫升)

  2.出示量杯:这就是1升的量杯。

  出示量筒:这就是刻有毫升刻度的量筒。

  3.教师演示升和毫升之间的关系:

  ①认识量筒上1毫升的刻度,找出100毫升的刻度。

  ②用量筒量100毫升的红色水倒入1升的量杯,一直到量杯满为止。

  板书:1升=1000毫升

  4.学生演示容积单位和体积单位间的关系:

  ①把1升的红色水倒人1立方分米的正方体盒里

  小结:1升=1立方分米

  ②把1毫升的红色水倒入1立方厘米的正方体盒里

  小结:1毫升=1立方厘米

  5.小结:容积单位有哪些?容积单位和体积单位之间有什么关系?

  6.反馈练习。

  3升=()毫升2700毫升=()升

  2.57升=()毫升640毫升=()升

  2.4升=()毫升3.5升=()立方分米

  500毫升=()升760毫升=()立方厘米

  (三)计算物体的容积。

  1.教学例1。

  一种汽车上的油箱,里面长8分米,宽5分米,高4分米。这个油箱可以装汽油多少升?

  8×5×4=160(立方分米)

  160立方分米=160升

  答:这个油箱可以装汽油160升。

  2.反馈练习。

  一个长方体水箱,从里面量长12分米,宽6分米,深5分米,这个水箱可装水多少毫升?

  12×6×5=360(立方分米)

  360立方分米=360000毫升

  答:这个水箱可以装水360000毫升。

  三.全课小结

  这节课我们学习了哪些知识?容积和体积有什么不同点?计算容积应注意什么?

  四.随堂练习

  1.填空。

  (1)()叫做容积。

  (2)容积的计算方法跟()的计算方法相同。但要从()是长、宽、高。

  (3)6.09立方分米=()升=()毫升

  1750立方厘米=()毫升=()升

  435毫升=()立方厘米=()立方分米

  9.8升=()立方分米=()立方厘米

  2.判断。

  (1)冰箱的容积就是冰箱的体积。()

  (2)一个薄塑料长方体(厚度不计),它的体积就是容积。()

  (3)立方分米()

  3.选择。

  (1)计量墨水瓶的容积用()作单位恰当。

  ①升②毫升

  (2)3毫升等于()立方分米。

五年级数学《容积》教案5

  一、说教材

  《体积与容积》是北师大版五年级下册第41-42页的内容,是在学生已经认识了长方体和正方体的特点的基础上,学习了长方体和正方体的表面积计算之后的教学内容,《体积与容积》是学生进一步学习体积的计算方法等知识的基础,也是发展学生空间观念的重要载体。

  二、说教法:在教学中,我积极引导学生通过观察、操作,让学生手、眼、脑、口并用,调动多种感官参与学习,丰富学生的感性认识。建立有关体积和容积的正确表象,从而切实掌握所学的知识,为以后的进一步学习作好铺垫。

  三、说学法:

  学生自主探索、发现,小组交流

  四、说教学目标:

  1.知识与技能

  通过具体的实验活动,了解体积和容积的实际意义,初步理解体积和容积的概念。

  2过程与方法。

  在操作、交流中,感受物体体积的大小、发展空间观念。

  3.情感、态度与价值观

  增强学生的合作精神和喜爱数学的情感。

  五、说教学重点、难点

  重点:初步理解体积和容积的概念,以及它们的联系和区别。

  难点:建立体积和容积的表象。

  突破方法:通过演示,引导学生观察,使体积和容积的意义变得直观,容易理解。通过直观的比较使学生理解体积与容积的区别与联系。

  六、说教具

  两个量杯、两个大小不同的水杯、形状不同的石块、小正方体、水。有关课件、茶叶罐,可乐瓶等容器。

  七、说教学过程

  (一)质疑导入

  出示课件乌鸦喝水动画视频。

  师:看完了动画片,谁能说说乌鸦为什么能喝到水呢?水面为什么会上涨呢?是不是原来的水增加了?

  根据学生的回答引导学生概括出:小石子占了一定的空间。

  (二)探究新知

  1、初步感知,物体所占空间有大小。

  师: 我们周围所有的物体都占有一定的空间,只不过有的占的空间大,有的占的空间小。例如,课桌占的空间大,墨水瓶占得空间小;我占的空间大,粉笔头占的空间小;教室占的空间大,黑板擦占的空间小。你能这样的对比着举几个例子说一说吗?(同桌互说)

  (设计意图:让学生利用已有的生活经验,初步感知物体的大小,为下面的探索活动做好铺垫。)

  2、提出问题,讨论解决方法。

  出示两块形状不同的石块,(一块扁状,一块球形的)谁占的空间大呢?,(1)学生观察并独立思考。

  (2)指名说说看法。

  师:看来,只凭观察我们无法判断谁占的空间大,谁占的空间小了。那你能不能想想办法,看看究竟谁占的空间大呢?

  (设计意图:提出问题,让学生寻找解决问题的办法,把学习的主动权交还给学生,不仅增强了学生探索的兴趣,而且还培养了学生解决问题的策略意识和能力。)

  3、观察实验,感知体积的意义。

  演示:将两块石头放入两个装有同样多水的杯子里。

  师:说说你有什么发现?

  生口答后,师追问:

  师:水面为什么会升高呢?上升的高度一样吗?说明了什么问题?

  学生自由发表意见

  引导生理解:两块石块在量杯中都会占一定的空间。所占的空间大,水面上升的就高;所占空间小,水面上升的就少。

  从而揭示课题:物体所占空间的大小,叫作物体的体积。(同时出示课件)

  现在你能用“体积”这个词来分别说说课桌、墨水瓶、教室和黑板擦吗?如:课桌墨水瓶比,课桌的体积大,墨水瓶的体积小......

  (设计意图:在活动中,学生深刻地感受到物体占有一定的空间,而且所占有空间的大小不同。学生经历了实验、观察、交流等探究过程,感知了体积的实际含义。)

  4、认识容积。

  师:今天老师带来了这么多的物品,都可以用来装东西。如:可乐瓶,茶叶罐,水杯,胶水瓶,

  像量杯、纸箱、可乐瓶,茶叶罐这样能装其它东西的物体叫容器。你还知道哪些容器?哪些容器装的东西多,哪些容器装的东西少?(学生例举生活中的容器。)

  出示两个大小不同的装满水的"水杯,问:哪个水杯装的水多?

  引导学生认识:两个杯子所能容纳物体的大小是不同的。

  揭示:容器所容纳物体的体积,叫作这个容器的容积。

  师:杯子里装满水,水的体积就是这个杯子的容积,茶叶罐装满茶叶,茶叶的体积就是这罐子的容积。

  5、区别体积和容积。

  出示:用来装小正方体的塑料盒和正方体教具。

  师:谁能指出这两个物体的体积和容积呢?

  交流中使学生明白:这两物体体积相同,但正方体教具没有容积。只有能够装东西的物体,才具有容积。引导学生发现:一般情况下,物体的容积比体积小。

  出示课件:体积与容积的区别

  (设计意图:通过比较让学生感知“容积”和“体积”的联系和区别,理解知识间的内在联系,形成比较完整的认知结构。)

  (三)解决问题,巩固应用

  1、试一试(P42)

  出示两个相同小正方体让学生比较大小,然后用4个相同的小正方体,摆出形状不同的物体,让学生判断它们体积的大小。

  师:通过观察,你们发现什么规律?

  引导学生得出结论:体积的大小与物体所占空间的大小有关,与物体的形状无关。(同时出示课件)

  2、课件出示:(第42页“练一练”的第4题)

  (1)搭出两个物体,使它们的体积相同。

  (2)搭出两个物体,使其中一个物体的体积是另一个的2倍。

  (学生先独立按要求操作,然后同桌交流,最后全班交流。学生搭出的图形可能会不一样,这是教师可以引导学生发现体积相等,形状可能不一样,这样可以为下一题的练习打下基础。)

  3、说一说。(第42页“练一练”的第1、2题)

  (课件出示插图,让学生独立思考,再指名回答,说出理由。)

  4、想一想。(第42页“练一练”的第3题)

  (设计意图:练习的设计体现了层次性、科学性和趣味性。学生利用所学知识解释生活中的问题,是所学知识的拓展和延伸。)

  (四)评价体验

  今天这节课我们学习了什么内容?你有什么收获?对体积和容积的知识,你还想知道什么?你对自己这节课的表现满意吗?

五年级数学《容积》教案6

  教学目标

  通过练习,进一步巩固长方体、正方体的体积计算方法,进一步体会体积和容积的意义。

  在观察中操作活动中,发展动手能力和空间观念。

  教学重点

  熟练掌握体积计算方法。

  教学难点

  理解体积和容积的意义。

  教具准备

  教师指导与教学过程

  学生学习活动过程

  设计意图

  一、揭示课题

  师板书课题

  二、进行练习

  1、求图形的体积

  请学生看书上的图然后回答:如何计算长方体和正方体的体积。

  2、用体积单位的进率单位换算知识未判断。

  3、填上适当的体积单位

  一块橡皮约10

  一本词典约900

  一个文具盒约0.35

  一个用品约0.6

  学生打开书,观察第1题的两个长方体和1个正方体的长、宽、高分别是多少?

  指否回答否,再让学生计算

  学生先找一找,再让学生交流思考的方法。

  根据自己的判断填上适当的单位。

  学生先说一说计算方法,

  然后进行计算。

  集体订正

  学生仔细观察图,理解题意后,独立完成。

  然后进行全班交流。

  通过让学生独立计算,巩固长方体和正方体的计算方法。

  让学生根据自己的判断填上适当的单位,进一步感受体积单位的实际意义,发展学生的空间观念。

  教师指导与教学过程

  学生学习活动过程

  设计意图

  4、解决实际问题

  引导学生说一说表面积和体积的不同计算方法。

  5、让学生理解两个图形所占的空间就是两个图形的体积;

  三、布置作业

  让学生独立在课堂本上完成第2、6、8、9、10题。

  可以结合实物,指一指。

  第一个图形:4×3×1=12cm;

  第二个图形的体积的策略可以多样化,可以移下面两个侧面,从而转化为一个长方体。

  通过让学生说说计算方法,体会虽然结要相同,但表面积和体积是两个不同的概念。

  发展学生的空间观念。

  板书设计:

五年级数学《容积》教案7

  教学理念:

  数学来源于生活,又回归于生活 。课堂创设动手活动,积累学生的感性认知 。

  教学目标:

  1、使学生理解容积意义,掌握常用的容积单位以及它们之间的进率。

  2、掌握容积和体积的联系与区别,知道容积单位和体积单位之间的关系。

  3、感受升和毫升的实际意义,能应用所学知识解决生活中的简单问题。

  教学重点:

  理解容积意义;掌握容积和体积的联系与区别。

  教学难点:

  理解容积意义;感受升和毫升的实际意义

  教学准备:

  教师:1L量杯,一次性纸杯24个(每组3个),1cm3的自制的小正方体容器,8个1升量杯, 10ml钙铁锌口服液,5ml注射器8支

  学生:2瓶自己带瓶装水,贴有商标的各种饮料瓶,药水瓶,家用油壶,牛奶袋,果汁盒等。

  教学过程:

  一、导课

  师:老师想送朋友一个生日礼物?(出示长方体礼盒)大家想知道是什么礼物吗?

  生:想

  师:是一个生日蛋糕

  师:如果老师告诉你这个礼盒长3分米,宽3分米,高1分米,这个礼盒的体积是多少?

  生:9立方米

  师:猜猜,这个长方体礼盒所容纳蛋糕的体积是多少?

  生:9立方米,8立方米,7.5立方米等(学生很快否定9立方米)

  师:(打开纸盒,露出蛋糕)是你所预料到的吗?如果你过生日收到这样的生日礼物会有何感想?

  生:(试说)太小了

  师:我买了这么大个礼物还小?

  学生:盒子里面太小了

  师: 盒子里面太小了,说的真到位。盒子里所容纳的蛋糕的体积叫盒子的容积。今天我们来学习容积和容积单位。(板书课题:容积和容积单位)

  (设计意图):学生通过求长方体的体积,并估算出长方体里所能容纳面包的体积,当老师打开礼品后,学生会发现与自己所估算的差别太大,突出容积的表象认知)

  二、理解容积的意义

  1、举例,感知容积意义

  出示墨水瓶:指出墨水瓶所能容纳墨水的体积叫做墨水瓶的容积。

  出示茶叶筒:茶叶筒所能容纳茶叶的体积叫做茶叶筒的容积

  2、理解容积的意义

  利用你准备的学具来说说,什么是它们的容积

  【出示课件(第2张幻灯片)】:集装箱、油漆桶(指名说出他们的容积)

  3、归纳概括容积意义

  像粉笔盒、墨水瓶所能容纳物体的体积叫做它们的容积。(学生齐读,老师板书)

  (设计意图:学生在充分的感性实例中积累容积的本质内涵,丰富的积累为学生归纳总结容积意义打下扎实基础)

  4、容积和体积的区别与联系。

  ①区别两者数据给出的不同

  师:同学们,我们继续来看这个长方体礼盒。礼盒放在空间,自身有什么?

  生:体积

  师:打开礼盒,礼盒里面又有什么?

  生:容积

  师:已知礼盒的长、宽、高,能求出礼盒的容积吗?

  生:不能

  师:想求出礼盒的容积,必须要知道(老师边比划边问学生)什么?

  生:礼盒里面空间的长、宽、高

  师:如果老师告诉你礼盒里面的空间是一个棱长为1分米的正方体,你能求出蛋糕的体积吗?

  生:能,1立方分米

  师:蛋糕的体积就是礼盒的容积

  (设计意图:通过学生对直观长方体礼盒的体积与容积的计算,突破求容积需要已知容器里面的数据这一难点)

  ②区别两者本质的不同

  师:【出示课件(第3张幻灯片)】:一个较小的实心长方体;一个较大的空心长方体)问题:谁的体积大;谁有容积?

  学生:指名回答

  ③小组讨论,交流汇报两者异同点(课件出示第4、5张幻灯片)

  师:同学们,体积与容积一字之差,他们有什么区别与联系呢?(小组讨论,交流汇报)

  联系:求的都是物体的体积。

  区别:体积求的是物体占空间的大小。(外部)

  容积求的是物体所能容纳空间的大小。(内部)

  (设计意图:多角度的`区分容积与体积的不同,从而使学生较为全面的理解容积的意义,突破容积意义这一教学难点)

  三、教学容积单位

  1、计量容积一般用体积单位。

  常用的体积单位有:立方厘米、立方分米、立方米(学生边说,老师边板书)

  2、认识升和毫升。

  ①观察学具,看看你所带的饮料瓶上所标示的净含量,你发现了什么?(小组交流汇报:发现它们的单位都是L 、 ml而且这些饮料瓶里装的是液体。)

  ②在计量液体的体积时,常用容积单位升(L)和毫升(ml)。当遇到液体体积很大时,例如:计量蓄水池、游泳池里的水的体积,就用立方米。(板书)

  3、感知1L

  ①介绍量杯,观察1L的刻度线,

  ②组长负责,将桌面上的瓶装水倒入1L的量杯中水,其他人仔细观察

  ③生活中,我们常用杯子喝水,组长负责将1L倒入纸杯大小,观察1升水大约几纸杯

  ④ 谈谈,对1L水你有什么感受?

  ⑤生活中那些物品用升做容积单位?(生:油桶、水桶、大瓶饮料瓶的容积)

  4、感知1ml

  (整队纪律,老师将在每组中找一名最快坐好的同学,负责下一个活动。给每组发一个5ml注射器)

  ① 桌面上有一杯有颜色的水,组长负责,用针管吸入1ml水,让大家看看

  ② 再将这1ml水注入一个空纸杯,再让大家看看

  ③ 谈谈,你对1ml水有什么感受?

  ④ 你准备的学具中那些标有毫升,是多少毫升?(举例:眼药水5ml、钙口服液10ml等)

  (设计意图:学生通过吸入1ml带蓝色的水,在注入纸杯的过程中感受1ml的多少,突破学生对1ml由感性认知到理性认知的突破)

  5、1L与1ml的关系

  师:通过前面几个活动,大家了解了1L 、1ml。那么1L 与1ml有怎样的关系呢?仔细观察桌面上的量杯,你就能找到答案

  生:齐答1L =1000ml(板书)

  6、升与立方分米、毫升与立方厘米的关系

  师:计量容积,一般用体积单位,但计量液体的体积时,常用的体积单位是升与毫升。这两者之间有没有关系呢?老师想请一位同学和老师一起做个实验。

  (拿出准备1立方分米的透明正方体,1升有颜色水)

  师:老师会做好你的助手,拿稳盒子,你放心大胆的到,开始!(此个环节老师要装作很神秘,学生在整个过程中很兴奋)

  生:(全场一片惊讶)得出:1升=1立方分米

  师:看来他们之间真有联系,谁能用黑板上的关系推算出1毫升等于多少?

  生:观察得出: 1毫升=1立方厘米

  (设计意图:学生通过这个活动,突破1升=1立方分米的教学难点)

  四、小结

  通过前面有趣的动手操作,闭上眼睛体会:升一般用于计量油桶、水桶、大瓶饮料瓶等的容积;毫升一般用于计量眼药水、药水、小瓶饮料瓶等的容积;而计量、集装箱容积;蓄水池、游泳池里的水的体积,就用立方米。

  五、练习巩固【课件出示(第6、7、8张幻灯片)练习题】

  1、填一填

  一瓶钢笔水的容积是60( ) 摩托车油箱的容积是8( )一瓶矿泉水的容积是600( )

  运货集装箱的容积约是40( )微波炉的容积是45( )

  (集体订正、纠错。)

  2、填出合适的数

  4L =( )ml4800 ml =( )L2.4 L =( )ml785 ml=( )L752cm3=( )dm37.5 L=( )ml36 dm3=( )cm38.04 dm3=( )cm32750ml =( )L

  (引导学生说出每道题是怎么换算的思路)

  3、联系实际【课件出示(第6、7、8张幻灯片)】

  出示生活中用到本节知识的图片(喝水、潜水艇、献血等图片)

  (设计意图:练习有层次,有代表性。由知识题型过度到生活实际,使学生理解数学来源于生活又应用于生活)

  六、结课

  今天我们所学的知识与生活联系非常紧密,大家下去后在生活中找找与我们这节课有关的内容,下节课我们将进一步学习容积的知识。

  板书设计:

  容 积 和 容 积 单 位

  像墨水瓶、粉笔盒、教室等所能容纳物体的体积,叫做它们的容积。

  一般用体积单位:立方厘米(cm3)、立方分米(dm3)、立方米(m3)

  计量液体:升(L)、毫升(ml)、立方米(m3)

  它们间的关系:1L= 1dm3

  1 ml=1 cm3

  1L=1000 ml

五年级数学《容积》教案8

  教学目标:

  知识与技能

  1、理解容积的含义,体会容积和体积的关系。

  2、认识常用的容积单位,感知建立升和毫升的容积观念。

  3、掌握容积的计算方法,能进行单位之间的换算。

  过程与方法

  1、经历容积概念的探究与理解过程。

  2、通过比较,明确容积单位与体积单位的区别和联系。

  情感态度与价值观

  1、培养学生的观察能力和探究意识。在探索未知的过程中体验学习数学的乐趣,培养学生积极、主动地参与学习和探究活动的态度。

  2、渗透“事物之间是相互联系的”这一辩证唯物主义的思想。

  教学重点:

  建立容积的观念,掌握容积单位之间的进率。

  教学难点:

  理解容积与体积的联系与区别。

  教学过程:

  一、创故事情景

  今天老师带来一位神通广大、变化多端的孙悟空,它可厉害呢,有72变。

  二、复习导入

  第一变回忆

  (1)什么叫体积?

  (2)体积单位有哪些?它们之间的进率是什么?

  (3)体积的计算方法是什么?

  三、探究新知

  第二变思考

  1、教学容积概念。

  运用你的预习知识,把魔方、电饭褒、雪梨、汽车的油箱这四种物品分成两类,你是怎样分的?说明理由。

  生:空心的能装东西的

  师:你在生活中见过哪些空心的,能装东西的物品?

  生:举实例(饭盒、矿泉水瓶、奶牛盒……)

  师:你想知道这些容器里面能装多少东西吗?

  这就是我们今天学习的内容:容积和容积单位(板书)

  什么叫容积?从*文字的字面解释容:容纳积:体积。合起来:像电饭褒、汽车的油箱等所能容纳物体的体积,叫它的容积。

  练习

  根据容积定义判断:

  (1)电饭褒的体积就是它的容积()

  计量容积一般可以用体积单位()

  (2)数学书P53页第一题。

  突出:体积(外面量数据)容积(里面量数据)板书

  2、教学容积单位:升和毫升

  师:请同学们再仔细观察你带来的物品,看看能否找到有关容积的数学信息?

  生:500毫升18.9升

  师:升、毫升就是我们今天要学习的容积单位。板书

  生:净含量:250毫升1升……

  师:表示什么意思?净含量:250毫升表示瓶子里水的体积是250毫升。而不是瓶子的容积是250毫升,也不是瓶子的体积是250毫升

  (选1升和1立方分米来对比,为实验作铺垫)

  回应:计量容积,一般用体积单位,什么时候用容积单位?计量液体的体积,用容积单位板书

  练习:(1)四人小组互相说说各自收集物品的容积。

  (2)老师也收集了一些物品,考考大家的眼力。出示:数学书P53第三题

  3、教学容积单位与体积单位之间的换算。

  师:谁知道这两个容积单位之间的进率是多少?生:1000。

  师:你是怎么知道的"?

  生:书上写的。

  师:你对这个关系不表示怀疑吗?真理总是通过实践来证明的,想验证一下,你有方法吗?

  由学生做实验:1升的冰红茶、500毫升的量杯、1立方分米的容器。

  师:从实验中你证实了1升=1000毫升,还得出什么结论?

  生:1升=1立方分米。

  如此类推:你还能推理出什么关系?

  生:1毫升=1立方厘米1立方米=1000升

  练习:数学书P52做一做第一题和P53第四题

  第三变:计算

  4、教学容积的计算

  出示例5,一种小汽车的油箱,里面长5dm,宽4dm,高2dm。这个油箱可以装汽油多少升?

  指一名学生读题。(突出容积的计算方法与体积计算方法相同)

  (1)分析理解题意:求“这个油箱可以装汽油多少升?”就是求这个油箱的什么?必须知道什么条件?是否具备?怎样算?结果是什么?怎么办?(为什么要改单位?求容积)

  (2)学生做完后集体订正。

  第四变:运用

  四、应用知识,解决问题

  咳两声,讲了一节课,老师口干了,很想喝水。

  师:谁知道一个正常人每天要喝多少水才合适才健康?

  生:1500毫升、1000毫升……

  师:你是从哪里知道的?

  生:书里介绍的。

  师:我们一起来看看数学书P52了解更多的课外知识。同时渗透节约用水的教育

  小组活动:

  (要求组长分工要明确:不同的人负责倒水、记录、计算以及汇报,倒水要注意别溢出来,注意纪律。)

  (1)将一瓶约()毫升的矿泉水倒在纸杯中,看看可以倒满几杯。

  (2)估计一下,一纸杯水大约有多少毫升,几纸杯水大约是1L,正常人一天喝多少杯才健康?

  全班分享

  五、总结质疑

  今天学习了容积和容积单位,你有什么收获?

  六、拓展延伸,发展思维

  作业:

  1、到商店、超市调查标有容积单位的商品及净含量,编一道有道容积计算的题目并解答。

  2、调查一大桶约18升的矿泉水和一瓶500毫升矿泉水的单价,算一算,一大桶矿泉水相当于几瓶这样的小瓶矿泉水,买哪种比较合算?

  教学反思:通过这节课,我体会到教师应在尊重教材的基础上,根据学生的实际有目的地对教材内容进行改编和加工,使教材变得生动,更贴近学生实际。例如课本上是在认识容积和容积单位后学习容积的计算的,而在后面的设计中我让学生先观察自己手中的盒子(自备的墨水盒、饼干盒等)的空间形状,再动手操作量出盒子里面的长、宽、高,并计算出盒子的容积,这就变成了学生身边的实际问题,有利于激发学生解决这些问题的欲望。在解决实际问题的过程中,学生应用知识解决问题的能力得到了提高,也让学生体会到“数学是解决实际问题的一种方法。”

  教学反思:

  在练习题目中,涉及到新课的内容可以再次点出,再次让学生加深印象,这样就节约了时间。在常规课堂中,切忌概念的讲授花费很多时间,概念讲得越多,学生可能越糊涂。其实学生头脑里已经对新概念有所认识和体会,我们只需要把新概念与旧概念的区别和联系讲清楚就行。

五年级数学《容积》教案9

  教材分析

  1、通过具体的实验活动,了解体积和容积的实际意义,初步理解体积和容积的概念。

  2、体积与容积的学习是在学生认识了长方体和正方体的特点以及长方体和正方体的表面积的基础上进行的。这一内容是进一步学习体积的计算方法等知识的基础,也是发展学生空间观念的重要载体。但体积和容积又是学生比较容易混淆的两个概念。

  学情分析

  数学教学活动必须建立在学生的认知发展水*和已有的知识经验基础上。对于概念教学,比较抽象,难于理解。学生们有着丰富的生活经验,从他们身边的事物出发,把概念变得形象化、具体化,学生会更容易接受。本课的重点是初步理解体积和容积的概念。体积的概念是物体所占空间的大小。

  教学目标

  知识与技能目标:通过具体的实验活动,了解体积和容积的实际意义,初步理解体积和容积的概念。

  过程与方法目标:在操作、交流中,感受物体体积的大小、发展空间观念。

  情感、态度和价值观目标:增强合作精神和喜爱数学的情感。

  现代教学手段:使用多媒体课件,使抽象变直观,发挥现代教育手段的优势。

  教学重点和难点

  教学重点:通过具体的实验活动,初步理解体积和容积的概念。

  教学难点:理解体积和容积的联系和区别。

  教学过程:

  (一)情境导入:

  师:今天老师和同学们一起来探究《体积与容积》这一课。

  师:同学们,你们知道乌鸦喝水的故事吗?为什么乌鸦最后能喝到水呢?谁能把这个故事讲给大家听?(生自由发言)

  (1)认识体积

  1、初步感受空间。

  师:老师往水里放一个苹果,苹果占空间吗?放一枚硬币,硬币占空间吗?橡皮占空间吗?铅笔盒占空间吗?桌子呢?凳子呢?还有什么东西占空间?师:是不是所有的东西都占空间?在水里占空间,拿出来呢?(也占空间)板书:空间。

  2、空间也有大小。

  师:橡皮与铅笔盒比谁占得空间大,谁占得空间小?桌子与凳子呢?板书:大小

  3、体积的概念。

  4、比较体积大小。

  香蕉和鸡蛋。

  老师叫一位学生上台,问:“你有体积吗?老师有体积吗?谁的体积大?”请这位同学变换位置,站在教室的不同地方,问:“它的体积变了吗?他的什么变了?说明了什么?”(物体的位置变化了,但体积不变)

  师:“橡皮泥是什么形状的?(长方体。)把橡皮泥捏成球体,同时问:“它这时是什么形状?(球体)它的体积变了吗?他的什么变了?(形状)说明了什么?(物体的形状变化了,但体积不变。)生活中你见到过这样的事情吗?(生:妈妈把一团面擀成一个薄饼。生:奶奶把一个黄瓜切成了一片片的。)

  (2)认识容积

  1、出示:饮料瓶,水杯,茶叶罐。

  师:请迅速给这三个物体按体积由大到小的顺序排一排。

  2、认识容器。

  师:他们是用来干什么的?(学生1:装饮料、学生:2盛水,学生3:装茶叶)教师:容纳东西(板书:容纳东西)

  师:还有什么能用来装东西?

  师:像脸盆、油桶、水杯这些能容纳东西的物体,我们称之为容器。

  板书:容器

  3、感受物体容积。

  4、出示容积概念

  (四)复习巩固,升华主题

  1、出示课件。谁搭的体积大?

  2、出示课件。那一个的体积大?

  3、出示课件。

  (五)总结评价

  师:你学到了什么?还有什么不明白的吗?对自己的表现进行评价。

五年级数学《容积》教案10

  教学目标:

  1、知道体积、容积的意义,以及它们之间的联系与区别。

  2、知道常用的体积单位及其所占空间的大小。

  3、会进行体积单位和体积单位,体积单位和容积单位之间的改写。

  4、知道物体中所含有的体积单位就是它的体积。

  教学重点:

  理解体积的含义,认识常用的体积单位。

  教学难点:

  理解体积与容积之间的联系与区别。

  教学过程

  一、故事引入

  师:今天,老师给同学们带来了一个小故事,故事里蕴藏着我们这节课要研究的数学知识,请仔细听。

  课件出示:智慧爷爷让淘气和笑笑比赛做口算题,获得第一名可以拿大的水果,奖品是苹果或鸭梨(两个水果的大小差不多),结果淘气获胜,可不知拿苹果还是鸭梨?

  师:淘气为难了,拿苹果还是拿鸭梨呢?这节课我们帮淘气想个办法,让他分辨出大小。

  二、实验探究

  (一)认识体积

  1、说一说。

  师:(出示一个苹果)苹果有的个头大,有的个头小,说明所占的空间有大有小,像这个苹果所占的空间,就叫苹果的体积。(板书:体积)篮球所占空间的大小,叫做篮球的体积。你能说说什么是数学书的体积吗?

  生:……

  师:谁能联系身边的物体,也像这样说说看。

  生:纸箱所占空间大小叫纸箱的体积。

  师:你能概括一下,究竟什么是物体的体积吗?

  生:物体所占空间的大小,叫体积。

  (教师小结并板书:物体所占空间的大小,叫做物体的体积。)

  2、比一比。

  师:老师请你们准备的物品,都带来了吗?那就把你的物品和同桌的物品比比,谁的体积大?谁的体积小?

  生1:我的苹果体积大,他的橘子体积小。

  生2:我的铅笔盒体积小,他的铅笔盒体积大。

  师:刚才我们用眼睛看,比较出了物体体积的大小,老师这有两样东西,(出示红薯和土豆)它们的体积谁大谁小?

  (有的学生说红薯体积大,有的学生说土豆体积大,还有的没有发表意见。)

  师:看来,用眼睛看,我们无法准确地分辨出谁的体积大,谁的体积小,你能想一个办法来解决这个问题吗?

  (学生独立思考,然后同桌交流。)

  师:谁愿意先说?

  生1:掂一掂哪个重,那个的体积就大。

  生2:放进盛有一样多水的杯子里,谁水面上升的高谁的体积就大。

  生3:把土豆和红薯放到同样大的杯子里,再各倒入200毫升的水,谁的水面高谁的体积就大。

  师:把无法用观察的方法比出体积大小的物体放入水中做实验,可以知道它们的体积大小。下面,咱们就分四人小组,利用桌面上的工具,进行实验。

  生1:我们实验的步骤是把土豆、红薯放到同样大的两个烧杯里,然后每个杯子里都倒入200毫升的水,结果放红薯的烧杯水面上升到370毫升,放土豆的上升到360毫升,我们组认为红薯的体积大。

  生2:我们组先把两个烧杯各放入150毫升的水,再把土豆红薯分别放到烧杯里,观察水面升高情况,得出也是红薯体积大。

  生3:我们组用一个烧杯做的实验,首先在烧杯里放200毫升的水,把土豆放进去,看到水面停在360毫升刻度上,拿出土豆再放红薯,水面停在370毫升。说明红薯体积只比土豆大一点点。

  师:电脑博士也做了这个实验,看看它和你们想的一样吗?实验的结果怎样?你有什么发现?(课件展示实验过程。)

  生:……

  (二)认识容积

  1、认识容器。

  师:同学们已经掌握了比较物体体积大小的方法。下面这三个物体,你能根据它们的体积,按照由大到小的顺序重新排列吗?

  (教师出示500毫升可乐瓶,200毫升茶叶盒,50毫升墨水瓶,学生上台操作。)

  师:排的对吗?可乐瓶能用来做什么?

  生:盛可乐、盛水、盛色拉油……

  师:茶叶盒呢?

  生:装茶叶。

  师:像这类可以用来盛放东西的物体,我们称之为容器。(板书:容器)

  2、感知容积。

  师:如果可乐瓶装满了水,水的体积就是它的容积。这个茶叶盒,它所能容纳茶叶的体积,就是它的容积。谁来说说什么是墨水瓶的容积?

  生:……

  师:你能从生活中举例,也像这样说一说吗?

  生1:塑料桶装满水,水的体积就是桶的容积。

  生2:茶杯里盛满水,水的体积就是这个茶杯的容积。

  师:谁能总结一下,什么是容器的容积?

  生1:杯子里水的体积就是杯子的容积。

  生2:容器里所盛物体的体积就是他的容积。

  (教师小结并板书:容器所能容纳物体的体积,叫做容器的容积。)

  师:请同学们看这儿,(出示一个烧杯,里面装有一半水)我说现在水的体积就是这个烧杯的容积,你同意吗?为什么?

  生:不同意,因为水没装满。

  师:这三样物品(500毫升、可乐瓶,200毫升的茶叶盒,50毫升纯蓝墨水瓶)它们谁的容积大?谁的容积小?

  生:可乐瓶容积大,墨水瓶容积小。

  师:你还能找出生活中的两个容器,并说出哪个容器容积大,哪个容器容积小吗?

  生:教室里的纯净水桶容积大,我喝水的瓶子容积小。

  3、比较容积相近的容器的大小。

  (出示标有1号、2、号标签的两个瓶子:一个是果粒橙瓶子,一个是康师傅绿茶瓶子,商标都已撕去。)。

  师:它们谁的容积大?谁的容积小?你能设计一个实验来解决这个问题吗?下面咱们分小组解决这个问题。

  生1:如果有商标就好了,上面有容积,一看就知道,可是现在没有商标,我们组把l号瓶里装满水,再把水慢慢倒进2号瓶,倒满后1号瓶还有剩余,说明1号瓶容积大。

  生2:瓶口太小倒水不方便,我认为把两个瓶子都装满水,倒进同样大的两个烧杯里,看水面的高度就可知道他们的容积大小。

  师:你认为哪一组设计的方法最简便,最容易操作?那就请你们上台来演示。

  (学生实验。)

  三、综合应用

  师:刚才,我们一起研究了物体的体积和容积,还掌握了比较它们大小的方法。下面我们来轻松一下,做个闯关游戏。

  第一关:课件出示教材第42页插图。

  师:请看清图意,他们都是用同样大小的立方体搭成的,你能判断出谁搭的长方体体积大吗?

  生:……

  师:他们的说法你同意吗?

  说说你的想法。

  生:……

  第二关:,课件出示教材第42页练一练第1题。

  师:一团橡皮泥,小明第一次把它捏成长方体,第二次把它捏成球,捏成的两个物体哪一个体积大?为什么?

  师:你能想出结果吗?如有困难可用实验方法亲自捏捏看。有结果了吗?

  生:我认为一样大,因为一块橡皮泥不管捏成什么样,还是它自己。

  第三关:课件出示教材第42页练一练第2题。

  师:谁愿意先说?

  生:……

  第四关:(课件出示)小明和小红各有一瓶同样多的饮料,小明倒了3杯,而小红倒了2杯。你认为有可能吗?为什么?

  生:有可能,小明的杯子小可以多倒几杯,小红杯子大就要少倒几杯。

  师:说得很有道理。


《找质数》五年级数学教案3篇(扩展8)

——五年级数学教案《长方体的认识》5篇

五年级数学教案《长方体的认识》1

  一、教学目标:

  1、教会学生认识长方体。

  2、教会学生用纸壳动手做长方体。

  3、使学生认识并理解长方体的长、宽、高。

  4、培养学生的探索意识和实践能力。

  5、培养学生初步的空间观念和空间想象力。

  二、教学重点:

  掌握长方体的特征,认识长方体的长、宽、高。

  三、教学难点:

  学生理解长方体相对的面完全相同的特点;体会棱与顶点的产生。

  四、课前准备:

  长方体实物、长方体框架教法学法实践法、合作交流法

  五、教学过程:

  1、谈话引入。

  在讲新课之前,我们先回忆一下,以前学过哪些几何图形?

  提问:这些都是什么图形?(这些图形都是由线段围成的*面图形)

  2、出示图。这些你看知道是什么吗?它们是什么图形?

  提问:这些物体的形状还是*面图形吗?(不是)

  老师:这些物体都占有一定的空间,它们的形状都是立体图形。

  3、举例。

  在日常生活中你还见到过哪些形状是长方体的物体?

  正因为有了长方体,我们的.世界才变得更加美妙神奇。这节课我们就一起走进长方体,来领略长方体的奥秘。

  板书课题:长方体的认识(老师根据学生回答,利用多媒体在计算机屏幕上显示下列图形。)

  4、认识长方体的面、棱、顶点。

  ( 1)请学生拿出自己准备的长方体学具,摸一摸、说一说,你有什么发现?(长方体有**的面)

  ( 2)再请学生摸一摸长方体相邻两个面相交的地方有什么?(边)

  老师讲述:我们把这两个面相交的边叫做棱。板书:棱

  ( 3)再请同学摸一摸长方体三条棱相交的地方有什么?(有一个点)

  老师:我们把三条棱相交的点叫做顶点。板书:顶点

  ( 4)师生在长方体教具上指出面、棱、顶点,学生依次说出名称。

  老师说出顶点、面、棱的名称,学生迅速在学具上指出。

  5、研究长方体的特征。

  (1)师:面、棱、顶点里面还蕴藏着许多特征,你们想不想知道?

  观察手中的长方体实物比一比,数一数,量一量,相信同学们一定会有许多惊喜的发现,你们有信心吗?

  (2)生采用自学、小组讨论,同桌探讨等形式,从数量、形状、大小等方面研究长方体的特征。

  (3)交流自己的发现

  顶点有什么特点?(8个)棱有什么特点?(12条,怎样数不容易遗漏?相等的棱有怎样的位置关系?)

  面有怎样的特征呢?(6个面。是长方形,面的大小关系怎样?)

  长方体相对的面有怎样的特征呢?(面积相等,形状相同)

  (4)投影出示两个长方形:这是两个面积同为90*方厘米的长方形,一个长是10厘米,宽是9厘米;另一个长是15厘米,宽是6厘米。它们可以做长方体相对的面吗?

  6、教学长方体的长、宽、高。

  (1)师:观察老师手中的长方体框架,如果把长方体的棱分组的话,你会怎样分?生思考并试着分一分。

  (2)揭示概念:相交于一个顶点的三条棱和长度分别称之为长方体的长、宽、高。

  (3)长、宽、高各有几条呢?(生试说)

  (4)生试着指出手中长方体的长、宽、高。

  (5)(变换长方体的摆法)现在它的长、宽、高呢?

  (6)小结:虽然是同一个长方体,但摆法变了,长、宽、高也就随着发生变化。

  (7)口诀:

  长方体立体形,8顶6面十二棱;棱分长、宽、高,每组四条要记好;6

  个面对着放,对应面都一样。

  7、完成P19做一做

  (1)做一个长方体

  (2)观察并回答

  总结 这节课你有何收获?

  六、教学结束:

  作业布置:要求学生回去动手做个长方体,下节课带来进行展示。

五年级数学教案《长方体的认识》2

  学习内容:

  长方体的认识(教材第18~19页的内容及第21~22页练习五的1、2、3、6、7题)。

  学习目标:

  1.初步认识立体图形、认识长方体的特征。

  2.通过观察、想象、动手操作等活动进一步发展空间观念。

  3.继续培养学生学习数学的兴趣,进一步形成勇于探索、善于合作交流的学习品质。

  教学重点:

  掌握长方体的特征。

  教学难点:

  通过观察、想象、动手操作等活动进一步发展空间观念

  教具运用:

  一些长方体物品,课件。

  教学过程:

  一、复习导入

  1.谈话引入,回忆以前学过哪些几何图形?它们都是什么图形?(由线段围成的*面图形)

  2.投影出示教材第18页的主题图。提问:这些还是*面图形吗?(不是)教师:这些物体都占有一定的空间,它们都是立体图形。提问:在这些立体图形中有一种物体是长方体,谁能指出哪些是长方体?

  3.举例:在日常生活中你还见到过哪些长方体的物体?长方体又具有什么特征呢?引出新课并板书课题。

  二、新课讲授

  1.认识长方体的面、棱、顶点。

  (1)请学生拿出自己准备的长方体学具,摸一摸,说一说。你有什么发现?(长方体有**的面)

  板书:面

  (2)再请学生摸一摸长方体相邻两个面相交的地方有什么?讲述:把两个面相交的边叫做棱。

  板书:棱

  (3)再请同学摸一摸三条棱相交的地方有什么?(一个点)讲述:把三条棱相交的点叫做顶点。

  板书:顶点

  (4)师生在长方体教具上指出面、棱、顶点。学生依次说出名称。

  2.研究长方体的特征。

  (1)面的认识。

  ①请学生拿出长方体学具,按照一定的顺序数一数,长方体一共有几个面?(6个面)有几组相对的面?(3组)前?后,上?下,左?右。

  ②引导学生观察长方体的6个面各是什么形状的?

  板书:6个面都是长方形,特殊情况下有两个相对的面是正方形。教师分别出示这两种情况的教具。

  ③引导学生进一步验证长方体相对的面的特征。

  板书:相对的面完全相同。

  ④请学生完整叙述长方体面的特征。

  (2)棱的认识。教师出示长方体框架教具,引导学生注意观察

  ①长方体有几条棱?

  ②这些棱可分为几组?

  ③哪些棱的长度相等?通过以上三个问题,分组讨论,实际测量。根据学生汇报后并板书:相对的棱长度相等。

  教师:请大家把长方体棱的特征完整地总结一下。

  (3)顶点的认识。课件演示:先闪动三条棱再分别闪动三条棱相交的点。

  师:请你们按照一定的顺序数一数,长方体有几个顶点?

  板书:8个顶点。

  指名让学生把长方体的特征完整地总结一下。

  3.认识长方体的直观图。

  (1)请学生拿出长方体学具,放在桌面上观察,最多能看到它的几个面?(三个面)

  (2)怎样把长方体画在纸上或黑板上。

  4.认识长方体的长、宽、高。

  (1)讨论:要知道长方体12条棱的长度,只要量哪几条棱就可以了?

  (2)归纳:我们把相交于同一个顶点的三条棱的长度分别叫做长方体的长、宽、高。习惯上,长方体的位置固定以后,我们把底面中较长的棱叫做长,较短的棱叫做宽,和底面垂直的棱叫做高。

  (3)拓展:老师将长方体横放、竖放,让学生分别说出长方体的长、宽、高。

  三、课堂作业

  1.完成教材第19页“做一做”。

  2.完成教材第21页练习五的第1、2、3、6、7题。

  (1)第1题:此题是让学生观察长方体纸巾盒,说出各个面的形状,哪些面形状是相同的?各个面的长和宽各是多少?同桌合作。

  (2)第2题:求长方体的棱长和。

  (3)第4题:让学生通过观察,发现长方体棱之间的关系,如:各组棱互相*行;与其中一条棱垂直的几条棱相互*行等。

  (4)第6题、第7题学生独立完成。

  四、课堂小结

  今天我们认识了长方体,知道了长方体的相关知识,谁愿意来说一说,这节课你有什么收获?

  五、课后作业

  完成练习册中本课时练习。

  板书设计:

  第1课时长方体

  相交于一个顶点的三条棱的长度叫做长方体的长、宽、高。

  长方体的六个面都是长方形,特殊情况下两个相对的面是正方形。相对的面完全相同。相对的棱长度相等。

五年级数学教案《长方体的认识》3

  教学目标:

  1、结合具体的长方体和正方体的认识情景,经历探究长方体和正方体特点的过程,能够准确的掌握长方体和正方体的表面特点。

  2、能够认识长方体和正方体,具有初步的立体空间想象能力。

  3、使学生感受到长方体和正方体与生活的密切联系,培养学习数学的良好兴趣。

  重点难点:

  学生能够熟练的掌握长方体和正方体的表面特点。

  教学方法:

  师生共同归纳和推理

  教学准备:

  长方体模型、正方体模型

  教学过程:

  一、复习导入

  教师出示教学板书,请学生观察下列长方形和正方形有什么特点?

  教师:提问学生长方形和正方形有什么特点?

  教师提问学生回答问题。(长方形和正方形都有四个直角;四条边,每组对边相等;正方形四条边都相等。)

  二、讲授新课

  教师让学生观察课本插图哪些物体的形状是长方体或正方体?

  教师提问学生:生活中哪些物体的形状是长方体或正方体?

  教师出示长方体和正方体模型,让学生观察长方体和正方体有什么特点?

  学生同桌之间交流讨论。

  教师提问学生长方体和正方体的特点有什么?

  学生回答:(长方体有6个面、8个顶点、12条棱,对面面积相等;正方体有6个面、8个顶点、12条棱,6个面都相等和12条棱相等。)

  学生自己填完课本14页的表格。

  三、课堂小结

  同学们,这一节课你学到了哪些知识?(提问学生回答)

  板书设计:

  长方体的认识

  长方体:6个面、8个顶点、12条棱;每组对面面积相等;

  正方体:6个面、8个顶点、12条棱,6个面面积都相等;12条棱长度都相等。

五年级数学教案《长方体的认识》4

  【教学内容】

  新世纪小学数学五年级下册《长方体的认识》

  【教学目的】

  1、通过观察实物、动手操作等活动,使学生认识长方体的特征,形成长方体的概念。

  2、通过建立图形的表象的过程,发展学生的空间观念。

  3、通过动手操作,小组合作学习,培养学生的立体思维,使学生在合作交流中体验到学习数学的乐趣,体验到生活中处处有数学。

  【教学用具】

  长方体模型课件

  【教学过程】

  一、情境创设新课引入

  1、同学们听说过北京大学吗?上北大是老师读书时的梦想。你能从北大校区中找到我们曾经学过的图形吗?

  2、生活中,你还见过哪些物体的形状是长方体?

  3、揭题:这节课进一步认识长方体。(板书课题)

  二、引导探究小组合作

  1、认识长方体各部分的名称。

  (1)游戏:你们会玩摸长方体的游戏吗?

  A你怎么确定摸到的一定是呢?还有什么方法?(他是用“面”、“棱”、“顶点”描述这个长方体的。)

  B小组内互相说一说:什么是长方体的面、棱、顶点?(我想什么是长方体的“面、棱、顶点”你们可能有所了解,在资料袋中也有提示说明。)

  C全班反馈

  D教师小结:刚才同学们用自己的语言描述了长方体的面、棱、顶点。

  2、探究长方体面、棱、顶点的特征

  A它们之间有联系吗?各有什么特征?

  B分小组活动。(下面小组分工合作,利用学具,通过摸一摸,数一数,量一量,剪一剪,比一比,看看有什么精彩的发现?将发现写在记录表上。)

  C全体发馈,同学提问。(根据小组的发现,谁能向他们提出问题?)

  D你们还有问题吗?

  E教师提问:正方体与长方体有关系吗?为什么说是特殊的长方体?(预设:认识长方体长、宽、高特征;正方体与长方体的关系)

  F教师小结:刚才同学们用自己的方法研究了长方体的特征,你可以画出一个长方体吗?

  3、教学如何画长方体。(如果这样放最多可以看见他的几个面?还有哪几个面看不见?)(在画图时,除了画前、后两个面是长方形,其它的面看上去成了*行四边形,实际上它还是长方形)

  三、运用新知体验价值

  1、如果现在只看到长方体的长、宽、高,你还能画出一个长方体吗?(闭上眼睛,画长方体。)

  2、说出长方体各个面的面积。说出长方体各个面的面积。

  3、猜一猜:根据长、宽、高长度,它可能是生活中的什么物体?

  4、做一个长方体宝宝床的床架,至少需要多少分米长的木条?

  5、你准备选择下面哪一种尺寸的床板?(单位:分米)

  32×920×10

  四、全课总结拓展创新

  1.想一想:为何北大校区众多建筑设施的外观造型都是长方体呢?

  2.实验活动:用准备的材料做一个长方体(再次体验长方体的特征)。

五年级数学教案《长方体的认识》5

  教学内容:

  教科书第72页的内容,练习十五的第1~4题。

  教学目的:

  使学生能直观认识长方体和正方体,能够辨认这些图形。

  重、难点:

  能辨认出不同状态下的长方体、正方体。

  教学过程:

  一、新课

  1、初步认识长方体。

  教师:“在日常生活中我们见到的物体有多种不同的形状(边说边拿出一个6个面都是长方形的长方体的实物,如装墨水瓶的纸盒、火柴盒等)。大家看,这是一个纸盒,谁知道它是什么形状的?”

  学生能回答可由学生回答。如果学生回答不出,教师可以告诉大家,再板书:长方体。教师让学生拿出带来的长方体形状的纸盒(教师可将自己预先多带来的纸盒分发给没有带来的学生),并提问:“大家仔细数一数,长方体有几个面?”(大部分学生随意地一个面一个面地数,个别学生会有顺序地数。教师行间巡视时,要注意发现会有顺序地数的学生。)

  教师:“长方体有几个面?”如果有学生回答错了,让他再数一数。教师再叫会有顺序地数长方体多个面的学生来数一次。

  教师:“我教你们一种不容易数错的方法,(边指着长方体的模型,边说)长方体有上、下两个面,前后两个面,左、右两个面,一共有六个面。”

  教师再出示一个长方体实物,其中有两个面是正方形的。教师问:“这也是一个长方体,它有几个面?相对的面一样吗?”教师让学生拿出带来的长方体实物(教师注意调配一下学生的长方体,使每个学生手中都有不同形状的长方体)。要求学生看一看长方体实物的各个面和相对的面有什么特点,并按照上面的问题提问学生。

  这样使学生明确长方体有6个面,相对着的两个面的形状相同。

  2、初步认识正方体。

  教师出示一些正方体的实物,如魔方、正方体的积木块(或小木块)和药盒等。提问:

  “谁知道它们是什么形状的?”边说边在黑板上板书:正方体。要求学生拿出带来的正方体实物,让学生看着实物,教师提问:“正方体有几个面?”进行观察、分析,并要求学生分别回答上面的问题。使学生明确正方体也有6个面。

  3、出示长方体图和正方体图。

  教师先出示长方体图,并且将长方体图跟同样大小的长方体模型加以对比。使学生知道这样的长方体模型画出的图应该是教师出示的图形的样子。

  学生认识正方体图的过程同上。

  4、辨认长方体和正方体。

  教师出示一些长方体、正方体和一个棱柱体、一个圆柱体的实物。提问:

  “哪些是长方体?哪些是正方体?”并让学生从中挑出长方体和正方体。

  教师:“*时你还看到哪些物体的形状是长方体的?哪些是正方体的?”

  课间活动。

  5、做教科书第72页上的“做一做”。

  先让学生说一说中间一行的每一个图形的名称,再让学生把是长方体或正方体的实物跟它们所对应的几何图形用线连起来。

  二、巩固练习

  1、做练习十五中的第1题,先让学生独立判断,然后集体核对。

  2、做练习十五中的第2题,让学生列举自己熟悉的长方体或正方体的物品。

  3、做第3、4题。做第4题时,教师先提问学生,正方体的6个面中每个面的大小怎样?(每个面都一样大小。)然后让学生自己动手摆。

  三、小结

  教师要学生回忆长方体有几个面?相对的面一样吗?

  接着回忆正方体有几个面?

  板书:长方体和正方体

  长方体:6面,相对的面一样

  正方体:6面,6个面都一样


《找质数》五年级数学教案3篇(扩展9)

——《分数与除法关系》五年级数学教案3篇

《分数与除法关系》五年级数学教案1

  一、教材分析

  “分数与除法的关系”这一教学内容,是小学数学第十册,第五单元中第一小节的授课内容,本节课承接了分数的意义等知识,又为今后学习,单位名称的转化和分数的大小比较等内容做好知识的铺垫,所以让学生很好的掌握分数与除法之间的关系,体会量与率的区别十分重要。

  二、教学目标

  本节课的指导思想是以培养学生动手操作能力,创新能力以及收集信息和处理信息的能力,发展学生空间观念。

  分数与除法的关系这一小节的目标有以下几点:

  1、知识目标:是理解并掌握分数与除法的关系,知道如何用分数来表示除法算式的商。

  2、能力目标:培养学生动手操作的能力,合作交流的能力,发展学生的逻辑思维和分析处理问题的能力。

  3、情感目标:在生生合作中学会倾听,收集他人的信息,在师生合作中,大胆创新勇于发现,不畏艰难。勇于探索和思考,培养学生转化的思想。

  三、课前准备

  本课材的内容是由以下几部分组成的:

  第一部分:是将1个物体*均分,来体会除法算式与分数的商的结果之间的联系。

  第二部分:是将3个物体来*均分,来体会每份的多少?它的商与除法之间的关系。

  第三部分:是本节的升华,总结分数与除法间的关系,归纳字母表示关系式。

  第四部分:是教学有关单位名称之间的转化。

  本节的重点是理解分数与除法之间的关系。而本节的难点是具体体会每一个商的由来,它具体表示的意义,也就是通过分数与除法之间各部分关系的教学,实际上要将分数的意义在学生的感性认识上进行一次升华。本节课我采取利用具体实物,图形相结合的教学手段来进行教学,教学过程的设计采取在大量的数活动和数学信息中感知知识产生和发展的过程。

  在教学的进行中,要充分创设让学生主动探究的学习氛围,设计生动有趣,富有个性的数学活动,在学习中使学生获得有价值的数学,实实在在的学好基础知识,让每个学生通过学都得到不同程度的发展营造民主、和谐、活跃的学习空间,培养学生学习数学的能力。

  材料准备:一米长的绳子一条,每个学生准备三个大小相同的圆纸片,水彩笔、直尺等文具。

《分数与除法关系》五年级数学教案2

  教学目标:使学生掌握分数与除法之间的关系,并能进行简单的应用;培养学生

  动手操作的能力和抽象,概括,归纳的能力。

  教学重点:分数的数感培养,以及与除法的.联系。

  教学难点:抽象思维的培养。

  教学过程:

  一、铺垫复习,导入新知。

  1、提问:

  A、7/8是什么数,它表示什么

  B、7÷8是什么运算,它又表示什么

  C、你发现7/8和7÷8之间有联系吗?

  2、揭示课题。

  述:它们之间究竟有怎样的关系呢?这节课我们就来研究"分数与除法的关系"。

  板书课题:分数与除法的关系

  二、探索新知,发展智能。

  1、教学P90。例2:把1米长的钢管*均截成3段,每段长多少。

  提问:

  A、试一试,你有办法解决这个问题吗?

  板书:用除法计算:1÷3=0.333……(米)

  用分数表示:根据分数的意义,把1米*均分成3份,每份是1米的1/3,就是1/3米。

  B、这两种解法有什么联系吗?

  (从上面的解法中可以看出,它们表示的是同一段钢管的长度,所以1÷3和1/3是相等的关系。)

  板书:1÷3=1/3

  C、从这个等式中,我们发现:当1÷3所得的商除不尽时,可以用什么数来表示也就是说整数除法的商也可以用谁来表示

  2、教学P90.例3:把3块饼*均分给4个孩子,每个孩子分得多少块。

  (1)分析:

  A、想想:若是把1块饼*均分给4个孩子,每个孩子分得多少怎么列式。

  B、同理,把3块饼*均分给4个孩子,每个孩子分得多少怎么列式3÷4的商能不能用分数来表示呢?

  板书:3÷4=3/4

  (2)操作检验(分组进行)

  ①把3个同样大小的圆看作3块饼,分一分,看每个孩子究竟能分得多少块饼。

  ②反馈分法。

  提问:

  A、请介绍一下你们是怎么分的

  (第一种分法:把3块饼一块一块地分,每个孩子分得每个饼的1/4,共得3个1/4块,也就是3/4块)

  (第二种分法:把三块饼叠在一起分,每个孩子分得3块饼1/4的,拼起来相当于一块饼的3/4,也就是3/4块)

  B、比较这两种分法,哪种简便些把5块饼*均分给8个孩子,每个孩子分得多少说一说自己的分法和想法。

  3、小结提问:

  A、观察上面的学习,你获得了哪些知识

  板书:被除数÷除数=除数/被除数

  B、你能举几个用分数表示整数除法的商的例子吗?

  C、能不能用一个含有字母算式来表示所有的例子。

  板书:a÷b=b/a(b≠0)

  D、b为什么不能等于0

  4、看书P91深化。

  反馈:说一说分数和除法之间和什么联系又有什么区别。

  板书:分数是一个数,除法是一种运算。

  三,巩固练习

  1、用分数表示下面各式的商。

  5÷824÷2516÷497÷139÷9c÷d

  2、口算。

  7÷13=()÷9=1/2=()÷()8/13=()÷()

  3、7/10表示把单位"1"*均分成()份,表示这样的()份的数。1÷21表示两个数(),还可以表示把()*均分成()份,表示这样的一份的数。

  四,全课小结

  当两个自然数相除不能整除时,它门的商可以用分数表示,由于除法是一种运算,而分数是一种数,因此,我们只能说被除数相当于分数的分子,除数相当于分数的分母,故此,分数与除法既有联系,又有区别。

  在整数除法中零不能作除数,那么,分数的分母也不能是零。

  五,家作

  P93.1,2,3

  板书设计:分数与除法的关系

  例2:1÷3=0.333……(米)=1/3(米)例3:3÷4=3/4

  被除数÷除数=除数/被除数

  a÷b=b/a(b≠0)

  分数是一个数,除法是一种运算


《找质数》五年级数学教案3篇(扩展10)

——五年级数学教案:解简易方程3篇

五年级数学教案:解简易方程1

  教学内容:

  义务教育课程程标准实验教科书数学(人教版)小学数学第9册57-58页的内容。

  教学目标:

  1、根据等式的性质,使学生初步掌握解方程及检验的方法,并理解解方程及方程的解的概念。

  2、培养学生的分析能力应用所学知识解决实际问题的能力。

  3、帮助学生养成自觉检验的良好习惯。

  重点、难点:

  理解并掌握解方程的方法。

  教具准备:

  多媒体课件

  教学过程:

  一、复习铺垫

  1、方程的意义

  师:同学们我们前一段时间学了方程的意义,你还记得什么叫方程吗?

  生:含有未知数的等式叫方程。

  2、判断下面哪些是方程

  师:你能判断下面哪些是方程吗?

  (1)a+24=73(2)4x<36+17(3)234÷a>12

  (4)72=x+16(5)x+85(6)25÷y=0.6

  生:(1)(4)(6)是方程。

  师:你为什么说这三个是方程呢?

  生:因为它含有未知数,而且是等式。

  二、探究新知

  (一)理解方程的解和解方程

  1、看图写方程

  师:同学们真厉害把学过的知识全都记得,请同学观察这幅图(出示57页天*图)从图中你知道了什么?

  生:我知道杯子重100克,水重X克,合起来是250克。

  师:你能根据这幅图列出方程吗?

  生:100+X=250.

  2、求方程中的未知数

  师:那么方程中的x等于多少呢?请同学们同桌交流,说说你是怎么想的?(交流后汇报

  生1:根据加减法之间的关系250-100=150,所以X=150.

  生2:根据数的组成100+150=250,所以X=150.

  生3:100+X=250=100+150,所以X=150.

  生4:假如在方程左右两边同时减去100,那么也可得出X=150.

  3、验证方程中的未知数,引出方程的解和解方程两个概念。

  师:同学们都很聪明用不同的方法算出X=150,研究对不对呢?

  生:对,因为X=150时方程左边和右边相等。

  师:这时我们说x=150是方程100+X=250的解,刚才我们求X的过程叫解方程。这两个概念具体是怎样的呢?请同学们自学课本57页找出什么叫方程的解?什么叫解方程?

  学生自学后汇报。(板书)齐读两个概念。

  4、辨析方程的解和解方程两个概念

  师:方程的解是未知数的值它是一个数,怎样判断一个数是不是方程的解呢?

  生:要看这个数能不能使方程左右两边相等。

  师:而解方程是求未知数的过程,是一个计算过程它的目的是求出方程的解。同学们要注意两个概念之间的区别与联系。

  5、巩固练习,加深理解。

  师:完成做一做:X=3是方程5X=15的解吗?X=2呢?(完成后汇报)

  生:X=3是方程5X=15的解,因为X=3时方程左右两边相等。

  生:X=2不是方程5X=15的解,因为X=2时左边5×2=10,右边是15,左边和右边不相等,所以X=2不是方程5X=15的解。

  (二)解简易方程

  1、复习等式的性质

  师:前两天我们学会了等式的性质,请根据等式的性质完成填空吗?

  (1)如果5+3=8,那么5+3-3=8()

  (2)如果50-13=37,那么50-13+13=50()

  (3)如果a-7=8,那么a-7+7=8()

  (4)如果X+9=45,那么X+9-9=45()

  师:你是根据什么填空的?

  生:等式的性质。

  师:等式有什么性质呢?我们齐来说一遍。

  2、理解方程与等式的联系,引出课题。

  师:(3)(4)题不但是等式而且是方程,我们知道方程是等式的一部分,所以等式的性质对方程同样适用,今天我们将应用等式的性质来帮我们解方程。(板书课题:解简易方程)

  3、出示例1图,列出方程。

  师:图上画的是什么?你能列出方程吗?

  生:X+3=9

  师:这个方程用天*怎么表示呢?

  生:天*左边放X个和3个球,右边放9个球。(电脑显示)

  4、引导学生思考怎样解方程。

  师:我们解方程的目的是求X,怎样使天*一边只剩x呢?

  生:天*两边同时减去3个球。(电脑显示)

  师:天*两边还*衡吗?怎样反映在方程上呢?

  生:方程两边同时减3。(结合学生回答板书)

  师:为什么同时减3而不是其它数呢?

  生:方程两边同时减3就可以使方程一边只剩X。

  5、检验方程的解。

  师:X=6是不是方程的解呢?

  生:是,因为X=6是方程左边是6+3=9,右边是9,左右两边相等,所以X=6是方程X+3=9的解。

  6、强调解方程的格式步骤

  电脑显示:解方程要注意:

  (1)先写“解”,等号要对齐。

  (2)做完后要注意检验。

  7、看书质疑

  8、学生练习

  师:你会学老师这样解方程吗?请同学们解方程X+3.2=4.6,x+19=30。

  9、学生板书练习集体订正

  师:你是怎样解这个方程的,为什么方程两边要同时减19.

  生:使方程一边只剩X。

  师:在这个过程中哪些是解方程,哪些是方程的解。

  生:我们计算的过程是解方程,而x=11是方程的解。

  10、小组讨论怎样解方程X-2=15,X-1.8=4

  师:请同学们小组讨论怎样解方程X-2=15,X-1.8=4说出你这样做的根据

  生:我根据方程两边同时加上一个数,方程两过仍然相等来解这两个方程的。

  三、实践应用,加深理解

  1、下面的方程你打算怎样算。

  ①X+0.3=1.8

  ②X-1.5=4

  ③X-6=7.6

  ④X+5=32

  2、我会填。

  (1)含有()的()叫方程。

  (2)使方程左右两边相等的()叫方程的解。

  (3)求()叫做解方程。

  (4)x-15=20这个方程的解是()

  3、我会选

  (1)χ+32=76的解是()

  A、χ=42B、χ=144C、χ=44

  (2)χ-12=4的解是()

  A、χ=8B、χ=16C、χ=23

  (3)χ+8=60的解是()

  A、χ=480B、χ=52C、χ=7.5

  (4)χ-3.5=1.5的解是()

  A、χ=5B、χ=20C、χ=2

  4、看图列方程并解答

  5、解决问题

  师:请同学们认真观察图,你能根据题意列出方程并解方程吗?

  学生练习

  四、全课小结,课外延伸

  师:这节课你有什么收获?

  师:请同学们思考生活中哪些问题可以运用解方程和知识帮我们解决问题,把你想到的和同伴一起分享。

  五、布置作业

  1、复习本节课的内容。

  2、完成课本63页练习十一第5、6题第1、2横行。

推荐访问: