欢迎来到专业的新思文库网平台! 工作计划 工作总结 心得体会 事迹材料 述职报告 疫情防控 思想汇报 党课下载
当前位置:首页 > 范文大全 > 对照材料 > 正文

p—n型Cu2O—TiO2复合可见光催化材料的研究进展

时间:2022-12-15 14:50:05 来源:网友投稿

摘要:半导体光催化剂TiO2由于其无毒无害、稳定性好、催化活性高等优点而备受关注,但其较宽的禁带宽度遏制了对太阳光的利用率,并且量子效率低.为了提高二氧化钛的光利用率,可通过与Cu2O复合对其改性,并形成pn型异质结光催化剂.因其特殊的能带结构和载流子输送特性而备受关注.详细介绍了Cu2OTiO2光催化剂的特性、研究现状以及应用领域,并对未来的研究方向进行了展望.

关键词:

pn异质结; Cu2OTiO2; 光催化

中图分类号: O 614.41+1 文献标识码: A 文章编号: 10005137(2013)05053106

0 引 言

光催化是利用太阳能实现环境净化和产生清洁能源的新型技术.自1972年Fujishima和Honda教授发现了TiO2单晶电极在光的作用下可将H2O分解成为H2和O2[1],开辟了光催化的研究方向.近些年来光催化的研究得到了迅速发展,尤其在太阳能利用等方面引起了广泛关注[2-5].由于TiO2具有催化活性高、稳定性好、价格低廉、对人体无毒害等优点而备受亲睐,被认为是最具有开发前景和应用潜力的环保型光催化材料,目前已在污水处理、空气净化、抗菌杀菌等领域得到了广泛应用[6-8].但TiO2由于带隙宽(Eg=3.0~3.2 eV),光吸收范围仅局限于紫外光区,而太阳光中紫外线的含量不到5%,使得太阳能利用率低.同时,光生电子-空穴易于复合,量子效率低,在很大程度上抑制了TiO2的实际应用.

在扩展TiO2光催化剂光吸收范围的诸多改性方法中,将带隙较窄的半导体与TiO2复合形成异质结成为有效方法之一.异质结材料由于两种组分为独立的纳米颗粒且又相互结合,表面暴露率高,使其兼有双元组分各自特性的同时又因形成的相互作用力而具有独特的性能.光催化半导体材料按照载流子特性可分为n型半导体和p型半导体.将不同类型的半导体材料复合可得到nn型、pp型和pn型异质结复合材料,通过不同组分间的接触面相连.当两个能级不同的半导体材料复合后,光生电子会迅速注入较低的导带,减少光生载流子的复合概率,还可以将宽带隙半导体的光响应区扩展到可见光区.其中pn异质结由于能够通过敏化作用拓展宽带隙半导体的波长范围且可通过内建电场抑制载流子复合,有利于提高光催化材料性能,因此备受关注[9-12].

Cu2O作为p型半导体,禁带宽度2.0 eV,目前在制氢、超导体、太阳能电池及光催化方面应用广泛.Cu2O是性能良好的可见光催化剂,且储存量大、无毒廉价.但是仍存在光生载流子不稳定、容易复合等缺陷,这样就大大降低其光催化效率.将Cu2O与TiO2复合并构成异质结,可有效拓展TiO2对可见光的响应并分离载流子,提高催化性能.研究者确实发现Cu2OTiO2复合材料较单一组分具有更佳的可见光催化活性[13-16].

4 结论与展望

本文作者详细论述了pn型Cu2OTiO2异质结可见光催化剂的光催化原理、材料特性、研究现状以及应用领域.该材料的研究仍旧需要在如下方面进行深入探索,以实现规模化的实际应用:(1)尚需寻求新型制备方法以获得结合牢固、均匀的异质结构;(2)尚需深入研究异质界面的特性以及对光生载流子的迁移的作用;(3)尚需拓展Cu2O-TiO2材料的应用领域,如固氮、石油泄漏的清除、电子器件、太阳能电池、传感器、能量和数据储存等,为异质结材料的产业化和市场化奠定基础.相信随着异质结理论研究的逐步深入,Cu2OTiO2异质结复合材料将在今后的实际应用中发挥重要作用.

参考文献:

[1] FUJISHIMA A,HONDA K.Electrochemical photolysis ofwater at a semiconductor electrode [J].Nature,1972,238(7):37-38.

[2] GELL M,JORDAN E H,SOHN Y H.Development and implementation of plasma sprayed nanostructured ceramic coatings [J].Surf Coatings Technol,2001,146(9):48-54.

[3] KANDAVELU V,KASTIEN H,THAMPI K R.Photocatalytic degradation of isothiazolin3ones in water and emulsion paints containing nanocrystalline TiO2 and ZnO catalysts [J].Appl Catal B,2004,48(2):101-111.

[4] 冯良荣,吕绍洁,邱发礼.稀土元素掺杂对纳米TiO2光催化剂性能的影响[J].复旦学报,2003,42(3):413-417.

[5] BYRNE J A,EGGINS B R.Immobilization of TiO2 powder for the treatment of polluted water [J].Appl Catal B,1998,17(1):25-36.

[6] 王桂茹.催化剂与催化作用[M].大连:大连理工大学出版社,2000.

[7] 孙德智.环境工程中的高级氧化技术[M].北京:化学工业出版社,2002.

[8] ZHANG Q H,GAO L,GUO J K.Effect of calcination on the photocatalytic properties of nanosized TiO2 powders prepared by TiCl4 hydrolysis [J].Appl Catal B,2000,26(3):207-215.

[9] 郑先君,黄娟.Pn异质结光催化剂的制备及性能的研究进展[J].河南化工,2008,5(28):21-23.

[10] EKAMBARAM S,IIKUBO Y.Combustion synthesis and photocatalytic properties of transition metalincorporated ZnO [J].Alloys Compd,2007,433(1):237-240.

[11] CHEN J T,WANG J.The effect of La doping concentration on the properties of zinc oxide films prepared by the solgel method [J].Cryst Growth 2008,310(10):2627-2632.

[12] AI Z H,XIAO H Y,MEI T.Electrofenton degradation of rhodamine B based on a composite cathode of Cu2O nanocubes and carbon nanotubes [J].J Phys Chem C,2008,112(3):11929-11935.

[13] LU C H,QI L M,YANG J H.Onepot synthesis of octahedral Cu2O nanocages via a catalytic solution route [J].Adv Mater,2005,17(21):2562-2567.

[14] SIRIPALA W,IVANOVSKAYA A,JARAMILLO T F.A Cu2O/TiO2 heterojunction thin film cathode for HOTOELECTROCATALYSIS [J].Solar Energy Mater Solar Cells,2003,77(3):229-237.

[15] YANG H M,OUYANG J,TANG A D.Electrochemical synthesis and photocatalytic property of cuprous oxide nanoparticles [J].Mater Res Bull,2006,41(7):1310-1318.

[16] LI J L,LIU L,YU Y.Preparation of highly photocatalytic active nanosize TiO2Cu2O particle composites with a novel electrochemical method [J].Electrochem Commun,2004,6(9):940-943.

[17] 阎子峰.纳米催化技术[M].北京:化学工业出版社,2003.

[18] 虞丽生.半导体异质结构物理[M].2版.北京:科学出版社,2006.

[19] KNEZ M,NIELSCH K,NIINIST L.Synthesis and surface engineering of complex B nanostructures by atomic layer deposition [J].Adv Mater,2007,19(21):3425-3438.

[20] BAO L Z,ZHANG X,WANG S,et al.Synthesis and catalytic performance of TiO2 nanotubes-supported copper oxide for low-temperature CO oxidation [J].Microporous Mesoporous Mater,2007,102(80):333-336.

[21] 曹立新,刘辉,朱琳,等.TiO2Cu2O复合光催化剂的制备及表征[J].中国海洋学报,2012,42(4):66-70.

[22] KANNEKANTI L,GULLAPELLI S,VALLURI D K.Highly stabilized and finely dispersed Cu2O/TiO2:a promising visible sensitive photocatalyst for continuous production of hydrogen from glycerol:water mixtures [J].J Phys Chem C,2010,114(50):22181-22189.

[23] YANG L X,CAI Q Y.High efficient photocatalytic degradation of pnitrophenol on a unique Cu2O/TiO2 pn heterojunction network catalyst [J]. Environ Sci Technol,2010,44(19):7641-7646.

[24] HOU Y,CHEN G H.Photoeletrocatalytic activity of a Cu2Oloaded selforganized highly oriented TiO2 nanotube array electrode for 4chlorophenol degradation [J].Environ Sci Technol,2009,43(3):858-863.

[25] QIU X Q,KAZUHITO.Hybrid CuxO/TiO2 nanocomposites as risk-reduction materials in indoor environments [J].ACS Nano,2012,2(6):1609-1618.

[26] WANG Z Y,LOU W X.TiO2 nanocages:fast synthesis,interior functionalization and improved lithium storage properties [J].Adv Mater,2012,24(30):4124-4129.

[27] DENG S Z,CHORNG H S.Reduced graphene oxide conjugated Cu2O nanowire mesocrystals for high-performance NO2 gas sensor [J].J Am Chem Soc,2012,134(10):4905-4917.

[28] LI S K,XIE A J.Rapid synthesis of flowerlike Cu2O architectures in ionic liquids by the assistance of microwave irradiation with high photochemical activity [J].Dalton Trans,2011,40(25):6745-6750.

[29] 吴省,蒋淇忠,马紫峰,等.利用微波法合成二氧化钛纳米管[J].无机化学研究简报,2006,22(2):341-345.

[30] FANG H T,LIU M,WANG D W.Comparison of the rate capability of nanostructured amorphous and anatase TiO2 for lithium insertion using anodic TiO2 nanotube arrays [J].Nanotechnol,2009,20(22):225701-225708.

[31] XU Y H,LIANG D H,LIU M L.Preparation and characterization of Cu2OTiO2:efficient photocatalytic degradation of methylene blue [J].Mater Res Bull,2008,43(12):3474-3482.

[32] BESSEKHOUAD Y,ROBERT D,WEBER J V.Photocatalytic activity of Cu2O/TiO2,Bi2O3/TiO2 and ZnMn2O4/TiO2 heterojunctions [J].Catal Today,2005,101(3):315-321.

Abstract:Semiconductor TiO2 photocatalyst has attracted much attention owing to its high stability,high activity and harmless for the healthy.However,the wide bandgap of TiO2 limits the absorption of solar light and the quantum efficiency is still very low.In order to improve the utilization of light,it is a promising way to modify TiO2 with Cu2O and form the pn heterojunction with the unique band structure and excellent photocatalytic.The catalyst property of Cu2OTiO2,its research status and application field were introduced and the potential development in the future was proposed.

Key words:pn heterojunction; Cu2OTiO2; photocatalysis

(责任编辑:郁 慧)

推荐访问:研究进展 复合 材料 光催化 Cu2O