欢迎来到专业的新思文库网平台! 工作计划 工作总结 心得体会 事迹材料 述职报告 疫情防控 思想汇报 党课下载
当前位置:首页 > 范文大全 > 公文范文 > 正文

超导现象

时间:2022-11-08 17:20:10 来源:网友投稿

摘要:超导现象出现的基本标志是零电阻效应和迈斯纳效应,但还伴随着多种特征的出现。物体在低温出现超导现象仍然有一些问题没有弄清,但人们已经知道了很多。首先,有一些低温超导现象是由于电声作用,可以用BCS理论做出解释,而象铜基超导体、重费米子超导体中的超导原因,如今仍在研究之中。由于超导体对环境的要求非常高,如今它还只能在科学家们的实验室中进行,并不能够大规模的应用到我们的日常生活中,但科学的发展是永无止境的,科学家们还正朝着提高超导体的温度以达到将超导应用于生活中,为人类造福。相信随着科学的发展,超导一定会广泛地应用与我们的生活。

关键词:超导现象;超导体

一、超导的基本介绍

人们把于超导状态的导体称之为“超导体”。超导体的直流电阻率在一定的低温下突然消失,被称作零电阻效应。导体没有了电阻,电流流经超导体时就不发生热损耗,电流可以毫无阻力地在导线中形成强大的电流,从而产生超强磁场。超导是指某些物质在一定温度条件下(一般为较低温度)电阻降为零的性质。1911年荷兰物理学家H?卡茂林?昂内斯发现汞在温度降至4.2K附近时突然进入一种新状态,其电阻小到实际上测不出来,他把汞的这一新状态称为超导态。以后又发现许多其他金属也具有超导电性。1933年,荷兰的迈斯納和奥森菲尔德共同发现了超导体的另一个极为重要的性质——当金属处在超导状态时,超导体内的磁感应强度为零,却把原来存在于体内的磁场排挤出去。对单晶锡球进行实验发现:锡球过渡到超导态时,锡球周围的磁场突然发生变化,磁力线似乎一下子被排斥到超导体之外去了,人们将这种现象称之为“迈斯纳效应”。

二、超导的发展前景

超导现象早在1911年就为世人所知。目前我国关于超导技术的各项研发均已步入正轨,且进入产业化运作,现已普遍运营在电力行业、通信领域、军事领域以及医疗领域等。

在我国关于超导的研发中,超导材料经营经历了低温到高温的研发,第一代材料已经研究成熟,第二代材料由于其成本低更适用于产业化运作而被市场看好;超导产品品类逐渐增加,现已进行产业化运作的有超导电缆、超导限流器、超导滤波器、超导储能等。虽然与国际尚有一定的差距,但部分领域的研发已经处于国际先进水平。

由于超导技术被认为将在一定程度上决定一个国家智能电网的竞争力,因此,对于超导产业而言,“十二五”期间,我国智能电网的全面建设将给该产业的发展提供良好的发展契机。

超导产业或将迎来“十年十倍”的快速增长,未来十年我国超导市场的规模约为1300-1600亿元,预计到2020年,该产值将达到750亿美元。

由于超导技术壁垒高,虽然各类超导材料企业以及电线电缆类生产企业相继进入超导产业市场,但全球仅少数研究机构掌握相关技术,且尚未有企业实现大规模商业化生产,市场呈现垄断格局,因此市场的最先进入者将因丰富的运行经验占据明显的优势地位,成为市场的领导者。

三、超导的分类和应用

超导材料按其化学成分可分为元素材料、合金材料、化合物材料和超导陶瓷。①超导元素:在常压下有28种元素具超导电性,其中铌(Nb)的Tc最高,为9.26K。电工中实际应用的主要是铌和铅(Pb,Tc=7.201K),已用于制造超导交流电力电缆、高Q值谐振腔等。②合金材料:超导元素加入某些其他元素作合金成分,可以使超导材料的全部性能提高。如最先应用的铌锆合金(Nb-75Zr),其Tc为10.8K,Hc为8.7特。继后发展了铌钛合金,虽然Tc稍低了些,但Hc高得多,在给定磁场能承载更大电流。其性能是Nb-33Ti,Tc=9.3K,Hc=11.0特;Nb-60Ti,Tc=9.3K,Hc=12特(4.2K)。如今铌钛合金是用于7~8特磁场下的主要超导磁体材料。铌钛合金再加入钽的三元合金,性能进一步提高,Nb-60Ti-4Ta的性能是,Tc=9.9K,Hc=12.4特(4.2K);Nb-70Ti-5Ta的性能是,Tc=9.8K,Hc=12.8特。③超导化合物:超导元素与其他元素化合常有很好的超导性能。如已大量使用的Nb3Sn,其Tc=18.1K,Hc=24.5特。其他重要的超导化合物还有V3Ga,Tc=16.8K,Hc=24特;Nb3Al,Tc=18.8K,Hc=30特。④超导陶瓷:20世纪80年代初,米勒和贝德诺尔茨开始注意到某些氧化物陶瓷材料可能有超导电性,他们的小组对一些材料进行了试验,于1986年在镧-钡-铜-氧化物中发现了Tc=35K的超导电性。1987年,中国、美国、日本等国科学家在钡-钇-铜氧化物中发现Tc处于液氮温区有超导电性,使超导陶瓷成为极有发展前景的超导材料。

超导材料具有的优异特性使它从被发现之日起,就向人类展示了诱人的应用前景。但要实际应用超导材料又受到一系列因素的制约,这首先是它的临界参量,其次还有材料制作的工艺等问题(例如脆性的超导陶瓷如何制成柔细的线材就有一系列工艺问题)。到80年代,超导材料的应用主要有:①利用材料的超导电性可制作磁体,应用于电机、高能粒子加速器、磁悬浮运输、受控热核反应、储能等;可制作电力电缆,用于大容量输电(功率可达10000MVA);可制作通信电缆和天线,其性能优于常规材料。②利用材料的完全抗磁性可制作无摩擦陀螺仪和轴承。③利用约瑟夫森效应可制作一系列精密测量仪表以及辐射探测器、微波发生器、逻辑元件等。利用约瑟夫森结作计算机的逻辑和存储元件,其运算速度比高性能集成电路的快10-20倍,功耗只有四分之一。

四、总结

超导现象中的迈斯纳效应使人们可以用此原理制造超导列车和超导船,由于这些交通工具将在悬浮无摩擦状态下运行,这将大大提高它们的速度和安静性,并有效减少机械磨损。利用超导悬浮可制造无磨损轴承,将轴承转速提高到每分钟10万转以上。超导列车已于70年代成功地进行了载人可行性试验,1987年开始,日本开始试运行,但经常出现失效现象,出现这种现象可能是由于高速行驶产生的颠簸造成的。超导船已于1992年1月27日下水试航,目前尚未进入实用化阶段。利用超导材料制造交通工具在技术上还存在一定的障碍,但它势必会引发交通工具革命的一次浪潮。超导材料的零电阻特性可以用来输电和制造大型磁体。超高压输电会有很大的损耗,而利用超导体则可最大限度地降低损耗,但由于临界温度较高的超导体还未进入实用阶段,从而限制了超导输电的采用。随着技术的发展,新超导材料的不断涌现,超导输电的希望能在不久的将来得以实现。

参考文献:

[1]《我国超导技术研究进展及展望》,林良真,电工技术学报,2005

[3]《http://fx.zzu.superlib.net/javascript:checkConTypes(0,1);奇妙的超导现象》,园丁,金属世界

推荐访问:超导 现象