欢迎来到专业的新思文库网平台! 工作计划 工作总结 心得体会 事迹材料 述职报告 疫情防控 思想汇报 党课下载
当前位置:首页 > 范文大全 > 公文范文 > 正文

汽车内饰NVH性能分析及研究

时间:2022-12-05 14:35:08 来源:网友投稿

zoޛ)j馓UG5QTv材料与隔声结构在汽车内饰上的应用。

关键词:NVH;内饰;声学包装;轻量化;吸声结构;隔声结构

中图分类号:U467  文献标识码:A  文章编号:1671-7988(2019)19-138-06

Abstract: The article discusses the importance of NVH performance. Moreover, starting from the three major sources of automobile noise and vibration, the paper analyzes the mechanism of noise and vibration generation, propagation path and acceptance. And in the development and design stage, formulate the corresponding NVH target of the whole vehicle body and the NVH target of the interior, so as to guide the optimization and development of the performance of the automobile interior decoration NVH. From the point of view of interior acoustic packaging, the noise in air propagation path is controlled. The principle and characteristics of sound absorption structure and sound insulation structure, material and structure,    performance factors and so on are expounded. Meanwhile, the lightweight technology of acoustic packaging is described. Combined with the actual situation, the application of sound absorbing material and sound insulation structure in automobile interior decoration is discussed.

Keywords: NVH; Interior; Acoustic packaging; Lightweight; Sound absorption structure; Sound insulation structure

CLC NO.: U467  Document Code: A  Article ID: 1671-7988(2019)19-138-06

前言

隨着经济及科技技术的发展,人们对汽车科技性、环保性、安全性及舒适性等要求越来越高。其中,车辆振动及噪声直接关系着汽车NVH性能,并影响驾驶室乘坐舒适性品质。NVH是指汽车的噪音(Noise)、振动(Vibration)、舒适性(Harshness)。同时,结合国际法规要求,提高车辆NVH性能已成为汽车研发过程中重要任务之一。降低车辆振动及噪声,提升驾驶室声学品质是当前汽车设计中应解决的重要问题。

汽车主要有三大振动源:动力系统噪声振动源、路面噪声振动源与风激励起噪声振动源。

(1) 动力系统噪声振动源

动力系统主要包括发动机、变速器、进气系统等。且此些部件都直接与车身系统相连,所产生噪声与振动直接传递到车身。汽车行驶时,它们是车内最主要噪声与振动源。

(2)路面噪声振动源

轮胎与路面行驶摩擦时产生噪声并传递车内。路面与轮胎间振动通过悬架系统直接传递到车身,并对驾驶室产生振动与噪声。此噪声振动与车速有关系,并与轮胎、悬架系统的参数也有关。当汽车以中等速度行驶时,该噪声为车内主要噪声源。

(3)风激励引起的噪声振动源

汽车以较高速度行驶时,风施加力在车身上。风同车身作用产生噪声,车外风噪穿过车身传递进车内。并且,风将车身钣金激励起,板振动并辐射噪声进车内。该噪声同车速大小紧密相关。一般情况下,汽车在高速行驶时(V>120km/h),风噪会压过前两种噪声振动源,成为最大噪声源。

噪声振动从车外经过车身传递到车内,传递过程主要分为三个阶段:源—传递通道—接受体。其模型如图1所示:

三大噪声振动源主要通过空气声传递和结构声传递两种途径,对车内传递振动与噪声。

空气声是指声音在空气中传播而人听到的声音,属于直接传递到人耳。结构声是指声波在结构中传递,再辐射到空中,最后人听到的声音,属于间接传递到人耳。

车内噪声与振动是由车外的“源”和车身的“传递通道”两者决定。因此,控制车内噪声振动主要从源与传递通道两个方面解决。

对空气声来讲,传递通道即为车身隔声与吸声。对结构声来讲,传递通道即为与车身接触点的振动向车内的传递。相对空气声传递通道来讲,结构声传递通道相对更复杂。

本文主要研究针对空气声为主的声学包装NVH性能,从而降低车内噪声声压级,提高驾驶室乘坐舒适性及整车品质。

1 车身NVH目标

车身NVH开发设计贯穿于整个开发周期。车身NVH目标体系主要是建立车身自身噪声和振动目标。

车身NVH开发设计贯穿于整个开发周期。车身NVH目标体系是建立车身自身噪声和振动目标。此目标体系含盖四个层面目标:整车级车身NVH目标、内饰车身NVH目标、白车身NVH目标与零部件NVH目标。本文主要提及整车级车身NVH目标和内饰车身NVH目标。

所谓整车级车身NVH目标,指在整车状态下,车身对整车NVH的影响所需设立的目标,包括车身振动目标与声学目标。其中,整车气密性、隔声量、声腔模态与关门声品质作为声学目标。

内饰车身NVH目标包括振动和噪声两方面。内饰车身振动目标包括弯曲模态频率和扭转模态频率,外界振动对车内振动的传递振振灵敏度。内饰车身声学目标包括外界声音激励对车内声音传递的声声灵敏度,以及外界振动激励对车内声音传递的声振灵敏度。

内饰声学包装主要解决空气传播路径中噪声、内饰车身振动及声辐射问题。

此次内饰声学包装主要从隔声结构、吸声结构方面进行研究。当外界噪声振动施加到车身时,内饰声学包装对此激励有一定的衰减作用。

2 吸声结构与隔声结构

2.1 吸声结构

2.1.1 吸声原理及吸声系数

声波在媒质中传播或者入射到另一个媒质的过程中,声能减少的过程就是吸声。吸声原理是声能转换成热能。当声波入射到多孔材料上,声波能顺着微孔进入材料内部,引起空隙中空气振动。由于空气黏滞阻力、空气与孔壁的摩擦和热传导作用等,使相当一部分声能转换为热能而被损耗,从而达到吸声目的。此材料也被称为吸声材料,其吸声过程如图2所示。

2.1.2 吸声主要材质及结构

吸声材料主要是指多孔吸声材料。多孔吸声材料是指从表面到内部有较多互关联的微孔材料。因内部有足够多微孔,且向外敞开,从而吸声声能。

多孔吸声材料的吸声系数随频率变化的曲线,如图3所示。

低频情况下,吸声系数较低,若解决低频噪声问题,采用吸声材料效果不佳。频率>250Hz后,吸声材料才起到实质吸声作用。随着频率提高,吸声系数增加。当增加到某一频率时,吸声系数达到最高,之后随着频率增加而波动,最后趋于一个稳定值或者降低。

多孔吸声材质可分为纤维型、泡沫型和颗粒型。汽车常用吸声材料有两种:泡沫吸声材料和纤维吸声材料。吸声材料主要结构如图4所示。

泡沫吸声材料的吸声系数较高。PU发泡材料是一种常见应用在车身上的泡沫型多孔吸声材料。如前壁板上、地毯上等。但其成本较高,因此主要用在中高级车上。

纤维吸声材料包括玻璃纤维、热塑纤维毡、针刺纤维毡、树脂纤维等。纤维材料吸声系数随频率的增加而增加。棉毡是一种应用较多的纤维材料,多用于前壁板、地毯等地方。玻璃纤维材料具有良好的保温隔热和防潮效果,也常用做发动机罩板和前壁板外侧的吸声隔热材料。由于成本低,纤维吸声材料主要广泛应用于经济型汽车上。

由于吸声材料一般为多孔性介质,所以隔声性能较差。

吸声材料在汽车内饰上应用广泛,如发动机罩隔热垫、发动机舱隔热垫、前壁板隔声垫、顶棚等。同时在A、B、C立柱上、门槛梁、门内饰板、轮毂包、仪表台板等地方也都安放吸声材料。

2.1.3 影响吸声系数的因素

影响材料吸声系数的因素有流阻、孔隙率、结构因子、厚度、密度、温度与湿度。

(1)流阻影响

流阻是指空气质点通过材料空隙的过程中所受的阻力。

流阻反映了材料的透气性,流阻越大,材料透气性越差。一般将材质分为高流阻、中流阻和低流阻三类型。对于低流阻材料,因内摩擦力与黏性力低,产生声能损失也低,因此低频段吸声系数低,到某个频率,吸声系数上升。对高流阻材料,因过高流阻使空气穿透材料的能力降低,导致吸声性能不佳,因此整个频段内吸声系数较低。

一般材料流阻将选择一个合适的范围,一般增加或减少材料体密度来调整流阻大小。最佳流阻为100--1000Pa﹒s/m。

(2)孔隙率影响

孔隙率(B)是指材料中空气的体积和整个样件的体积之比,表示为 B=Va/Vm

(Va为空气的体积;Vm为整个样件的体积)

多孔材料的孔隙率通常在70%以上,矿渣棉为80%以上,玻璃棉为95%以上。通常,材料孔隙率高、孔隙细小,则吸声性能较好;反之,孔隙過大,则吸声效果较差。

(3)结构因子影响

所谓结构因子,指多孔材料内部微观结构对吸声性能影响的因子。多孔材料结构因子大多数为2—10,也有高达25。结构因子对低频吸声基本没有影响。当材料流阻比较小时,也可以增大结构因子,使吸声系数在中高频范围内呈现周期性变化。

(4)厚度影响

不同厚度的同一种材料的吸声系数如图5所示。厚度增加,吸声系数增加,特别是在中低频段。但是厚度增加到一定值之后,吸声系数的增加量就开始减少。

车身布置时,声学包装材料的厚度一般不超过30mm。在此厚度范围内,增加厚度对提高吸声系数有帮助。设计内饰结构时,尽量给声学材料留下足够大空间。

(5)密度

材料体积密度同材料纤维、颗粒大小等因素有关系。体积密度增加,材料内部的孔隙率降低,流阻增加,低频段的吸声系数提高,但高频段的吸声系数降低。

体积密度一样的不同材料,其吸声系数可能不同。一定体积密度能使某种吸声材料达到最佳吸声效果,因此不同材料有不同的最佳体积密度。某材料吸声系数随体积密度變化关系如图6所示。

(6)温度影响

在常温下,环境温度对材料吸声系数几乎无影响。当温度变化时,声速和波长会发生变化,因此吸声系数频率会漂移。温度降低,吸声系数往低频方向漂移;温度升高,则往高频方向漂移。

(7)湿度影响

湿度增加会降低材料的孔隙率,从而降低吸声系数。而且,湿度高会使材料变质。

2.2 隔声结构

2.2.1 隔声原理及隔声系数

采用某种材料与结构将外界声源同接收环境隔离开,使环境噪声减少,即为隔声。

当声音从空气入射到另外结构的表面时,一部分声能被反射回来,另一部分声能则透过,继续在空气中传播。这种材料能反射一部分声能,只让一部分能量透过,即为隔声材料,如图7所示。

材料隔声能力采用声传递损失(STL)来定义。其声传递损失的定义为入射声功率与透射声功率之比的对数值。即为:

声传递损失越高,材料隔声性能将越好。 均值材料的隔声性能满足质量原理,密度越高,隔声性能越好。

2.2.2 隔声材质及隔声结构

隔声结构一般分为单层板隔声与双层板隔声。

隔声单层板的隔音结构如上图7所示。单层板隔声性能是由板面密度(质量)、刚度与阻尼(材料损耗因子)决定。低频段,隔声效果由刚度控制。到了一定频率后,隔声量由质量大小控制,质量增加一倍,隔声量增加6dB。在这区域内,隔声量随着频率的增加而增加,频率增加一倍,隔声量增加6dB。到了高频段,进入了吻合效应区。在吻合频率附近,隔声量迅速下降,而且受到阻尼影响。

双层板的隔音结构如图8所示。两块板分离开,中间有空气隔离,此组合形式为双层板隔声结构。双层板能取得良好的隔声性能。双层板隔声效果比单层板好。

车身上双层板结构较多。车身多数部位是由金属板、吸声层与隔声层组成,如前壁板。金属板和隔声层将看成是一个双层隔声系统,而中间吸声层可看作是一个弹簧。

一般隔声材料包括PVC、EVA、EDPM等。同时,车身钢板和玻璃也是隔声材料。

3 轻量化材质

3.1 轻量化材质定义

传统隔音垫主要是由重涂材料与吸音材料复合而成。重涂材料一般包括EVA、EPDM或PVC等。吸音材料包括棉毡、PU发泡与热塑纤维等。其中,重涂材料主要是隔声、阻声或反射噪声。吸音材料主要是吸收噪音。由于重涂材料密度大,传统型隔音垫重量较重。

轻量化型隔音垫主要是由两层吸音材料中间复合一层薄膜粘结组成。利用高密度吸音材料代替传统重涂材料作为隔音层,称作硬质吸音材料。另一层吸音材料密度较低,称软层吸音材料。由于软层吸音材料比重涂材料成本低、质量轻,因此实现低成本、轻量化目标。

重涂材料通过反射声波达到隔声作用,但高密度吸音材料隔声性能虽比重涂材料差,但隔声同时,通过吸音性能补偿。传统隔音垫与轻量化型隔音垫材料结构对比如图9所示。

影响轻量化型隔音垫NVH性能主要因素有:软层吸音材料厚度、软层吸音材料面密度,硬层吸音材料面密度、薄膜类型和密度、吸音材料的配方以及流阻。

重涂材料轻量化设计,不仅满足NVH性能,而且实现比传统隔音垫重量降低60%,成本降低20%的目标。

3.2 轻量化技术

目前,汽车内饰声学包装轻量化技术归纳如下:

(1)轻质材料的应用技术。如高倍率发泡、多孔吸声纤维材料等。

(2)新型复合型声学材料结构的应用。如微穿孔复合型、多层棉毡与发泡层组合替代传统 “软硬”双层组合的声学结构。

(3)多属性轻量化应用技术。如合理分配内饰声学包装的布置,并对材质形状、厚度、密度等作以科学调整。

4 吸声材料与隔声结构的应用

声学包装材料广泛应用在汽车车身上,如前壁板、顶棚、中控箱、地板、立柱、行李箱、轮毂包等。

4.1 吸声材料应用

4.1.1 发动机舱盖隔热垫

发动机舱盖隔热垫由三层结构组成:中间吸声材料与外面两层隔热面料。此结构既能隔离发动机的热传递,也能吸收发动机噪声。

中间层通常采用吸声材料为PU泡沫、玻璃纤维与热塑纤维毛毡。玻璃纤维隔热、吸声性能都好,且成本低,但对人体有害,主要用于经济型汽车。

PU材料在吸声材料外加两层面料,一般为无纺布,类似薄膜,起到一些隔声作用,提升了中低频吸声性能。但高频吸声性能降低,主要用在中高级轿车。

某汽车在全加速状态下,有与没有隔热垫的情况下车内噪声曲线比较,如图10所示。

4.1.2 车门内饰板吸音垫

车门内饰板吸音垫主要材质有玻璃纤维、PU泡沫和热塑纤维毛毡。

车门内饰板吸音垫主要布置如图11所示。

某军用型车辆车门内饰板吸音垫主要布置如图12所示。

4.1.3 座椅

座椅表面材质有三种:布、真皮革和人造皮革。内部包裹材质为多孔泡沫材料。

车内最大潜在吸声部件是座椅。座椅吸声有两大特点:面积大,厚度深。座椅面积非常大,内部又为多孔吸声材料,所以座椅吸声能力很强。

座椅在内饰NVH设计中占了不少比重。结构厚度决定吸声频率效果。座椅的厚度是其他吸声结构无法相比的,所以它对低频噪声的吸收大于其他部件。某款车在特定速度下,有和没有座椅的车内噪声比较,如图13所示。

座椅表面对吸声性能影响也大。布面料透气性能好,声波很容易穿过而进入泡沫材料,从而被吸收。皮革面料的透气性差,声波穿透有难度,所以其吸声性能远小于布面料。

在皮革面料上穿孔,增加其透气性,虽吸声系数有所提高,但仍远低于布面料。

4.2 吸声材料与隔声结构组合应用

汽车上常用的声学包装材料,一般采用隔、吸声型组合结构类型。 隔声结构和吸声材料组合在一起应用,以减少车内噪声。

其中,材料吸声性能与隔声性能混合在一起应用。吸声材料也具有一定隔声性能,但主要起吸声作用;同样,隔声材料也有吸声性能,但主要起隔声作用。

比如前壁板隔声垫就是隔、吸声型组合隔热垫,其材料结构如图14所示。车身上大多数声学包装是隔声结构和吸声材料的组合结构。若将前围钣金作为隔声层,其前壁板隔声垫结构由三层结构组成:钢板隔声层、吸声层与隔声层。钢板也是较好的隔声材料。

前壁板隔声垫吸声层材质一般主要采用PU泡沫、棉毡,隔声层材质一般采用EVA。

某乘用车前围隔声垫主要材质及结构如图15所示,安装效果如图16所示。

某车在加速状态下,在有、无隔声垫的车内噪声进行比较,如图17所示。其中无隔声垫时,车内噪声增加,尤其是中高频段。

5 结语

汽车研发设计中,振动及噪声的优化设计贯穿于整個开发设计周期。汽车NVH性能是衡量车辆安全、环保、舒适性的重要性能指标。

本文以汽车三大噪声振动源为出发点,研究其噪声及振动的产生、传播路径及接受体。同时,在汽车开发设计初期,制定整车级车身NVH目标、内饰车身NVH目标等。从不同层次,全面指导汽车NVH设计开发。并从整车不同模块实施具体减振降噪措施,以提高汽车声学品质与乘坐舒适性。

文章主要从内饰声学包装角度实施隔音、吸音降噪处理技术。同时,分别阐述了吸声结构、隔声结构的原理及特点、材质及结构、性能影响因素等。并根据当前汽车发展趋势,对汽车轻量化技术及轻量化声学包装进行分析及研究。同时,结合实际生产,阐述了吸声材料与隔声结构在车身内饰上的应用。

结合目前汽车设计发展现状及趋势,我国汽车NVH设计已取得相应成果。为进一步促进汽车产业发展,提升产品竞争力,控制车辆的振动及噪声仍是汽车技术领域的创新点。

参考文献

[1] 刘显臣.汽车NVH性能开发[M].北京:机械工业出版社,2017.10.

[2] 庞剑.汽车车身噪声与振动控制[M].北京:机械工业出版社,2015.1.

[3] 庞剑,谌刚,何华.汽车噪声与振动:理论与应用[M].北京:北京理工大学出版社,2006.

[4] 泛亚内饰教材编写组.汽车内饰设计概论[M].北京:人民交通出版社,2012.

[5] Roger Williams, Fraser Henderson,Mark Allman-Ward,et al. Using an Interactive NVH Simulator for Target Setting and Concept Evaluation in a New Vehicle Programme [C].SAE Paper 2005-01- 2479.

推荐访问:内饰 性能 分析 研究 汽车